論文の概要: ALVIN: Active Learning Via INterpolation
- arxiv url: http://arxiv.org/abs/2410.08972v1
- Date: Fri, 11 Oct 2024 16:44:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 20:46:27.972140
- Title: ALVIN: Active Learning Via INterpolation
- Title(参考訳): ALVIN: インタポレーションによるアクティブラーニング
- Authors: Michalis Korakakis, Andreas Vlachos, Adrian Weller,
- Abstract要約: アクティブラーニングVia Interpolation (ALVIN) は、表現不足群と表現不足群の例間のクラス内一般化を行う。
ALVINは、ショートカットの影響に反する表現空間の領域にモデルを公開する情報的な例を特定する。
感情分析、自然言語推論、パラフレーズ検出を含む6つのデータセットの実験結果は、ALVINが最先端のアクティブな学習方法より優れていることを示す。
- 参考スコア(独自算出の注目度): 44.410677121415695
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Active Learning aims to minimize annotation effort by selecting the most useful instances from a pool of unlabeled data. However, typical active learning methods overlook the presence of distinct example groups within a class, whose prevalence may vary, e.g., in occupation classification datasets certain demographics are disproportionately represented in specific classes. This oversight causes models to rely on shortcuts for predictions, i.e., spurious correlations between input attributes and labels occurring in well-represented groups. To address this issue, we propose Active Learning Via INterpolation (ALVIN), which conducts intra-class interpolations between examples from under-represented and well-represented groups to create anchors, i.e., artificial points situated between the example groups in the representation space. By selecting instances close to the anchors for annotation, ALVIN identifies informative examples exposing the model to regions of the representation space that counteract the influence of shortcuts. Crucially, since the model considers these examples to be of high certainty, they are likely to be ignored by typical active learning methods. Experimental results on six datasets encompassing sentiment analysis, natural language inference, and paraphrase detection demonstrate that ALVIN outperforms state-of-the-art active learning methods in both in-distribution and out-of-distribution generalization.
- Abstract(参考訳): Active Learningは、ラベルなしデータのプールから最も有用なインスタンスを選択することで、アノテーションの労力を最小限にすることを目的としている。
しかし、典型的なアクティブラーニング手法は、職業分類データセットにおいて、特定のクラスで不均等に表現される確率が異なるクラス内の異なるサンプルグループの存在を見落としている。
この監視により、モデルは予測のためのショートカット、すなわち、入力属性とよく表現されたグループで発生するラベルの間の急激な相関に依存する。
この問題に対処するため,本論文では,表現空間の例群間に位置するアンカーを作成するために,未表現群とよく表現された群間のクラス内補間を行うアクティブラーニングVia Interpolation(ALVIN)を提案する。
アノテーションのためにアンカーの近くにあるインスタンスを選択することで、ALVINはショートカットの影響に反する表現空間の領域にモデルを公開する情報的な例を特定する。
重要なことに、このモデルはこれらの例を高い確実性と見なしているため、典型的なアクティブラーニング手法によって無視される可能性が高い。
感情分析、自然言語推論、パラフレーズ検出を含む6つのデータセットの実験結果から、ALVINは、分布内および分布外の両方において、最先端のアクティブな学習方法より優れていることが示された。
関連論文リスト
- Downstream-Pretext Domain Knowledge Traceback for Active Learning [138.02530777915362]
本稿では、下流知識と事前学習指導のデータ相互作用をトレースするダウンストリーム・プレテキスト・ドメイン知識トレース(DOKT)手法を提案する。
DOKTは、トレースバックの多様性指標とドメインベースの不確実性推定器から構成される。
10のデータセットで行った実験は、我々のモデルが他の最先端の手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-07-20T01:34:13Z) - Leveraging vision-language models for fair facial attribute classification [19.93324644519412]
汎用視覚言語モデル(英: General-purpose Vision-Language Model, VLM)は、共通感性属性のための豊富な知識源である。
我々は,VLM予測値と人間定義属性分布の対応関係を解析した。
複数のベンチマークの顔属性分類データセットの実験は、既存の教師なしベースラインよりもモデルの公平性の向上を示している。
論文 参考訳(メタデータ) (2024-03-15T18:37:15Z) - Learning to Detect Instance-level Salient Objects Using Complementary
Image Labels [55.049347205603304]
本報告では,本問題に対する第1の弱教師付きアプローチを提案する。
本稿では,候補対象の特定にクラス整合性情報を活用するSaliency Detection Branch,オブジェクト境界をデライン化するためにクラス整合性情報を利用するBundary Detection Branch,サブティナイズ情報を用いたCentroid Detection Branchを提案する。
論文 参考訳(メタデータ) (2021-11-19T10:15:22Z) - Learning Debiased and Disentangled Representations for Semantic
Segmentation [52.35766945827972]
セマンティックセグメンテーションのためのモデルに依存しない訓練手法を提案する。
各トレーニングイテレーションで特定のクラス情報をランダムに除去することにより、クラス間の機能依存を効果的に削減する。
提案手法で訓練したモデルは,複数のセマンティックセグメンテーションベンチマークにおいて強い結果を示す。
論文 参考訳(メタデータ) (2021-10-31T16:15:09Z) - Neighborhood Contrastive Learning for Novel Class Discovery [79.14767688903028]
我々は,クラスタリング性能に重要な識別表現を学習するために,Neighborhood Contrastive Learningという新しいフレームワークを構築した。
これらの2つの成分がクラスタリング性能に大きく寄与し、我々のモデルが最先端の手法よりも大きなマージンで優れていることを実験的に実証した。
論文 参考訳(メタデータ) (2021-06-20T17:34:55Z) - Semi-supervised Active Learning for Instance Segmentation via Scoring
Predictions [25.408505612498423]
インスタンスセグメンテーションのための新規かつ原則的な半教師付きアクティブ学習フレームワークを提案する。
具体的には,クラス,バウンディングボックス,マスクの手がかりを明示的に評価するトリプレットスコア予測(tsp)という不確実性サンプリング戦略を提案する。
医用画像データセットを用いた結果から,提案手法が有意義な方法で利用可能なデータから知識を具現化することを示す。
論文 参考訳(メタデータ) (2020-12-09T02:36:52Z) - Learning What Makes a Difference from Counterfactual Examples and
Gradient Supervision [57.14468881854616]
ニューラルネットワークの一般化能力を改善するための補助的学習目標を提案する。
我々は、異なるラベルを持つ最小差の例のペア、すなわち反ファクトまたはコントラストの例を使用し、タスクの根底にある因果構造を示す信号を与える。
このテクニックで訓練されたモデルは、配布外テストセットのパフォーマンスを向上させる。
論文 参考訳(メタデータ) (2020-04-20T02:47:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。