Disentangling unitary dynamics with classically simulable quantum circuits
- URL: http://arxiv.org/abs/2410.09001v2
- Date: Mon, 12 May 2025 20:59:40 GMT
- Title: Disentangling unitary dynamics with classically simulable quantum circuits
- Authors: Gerald E. Fux, Benjamin Béri, Rosario Fazio, Emanuele Tirrito,
- Abstract summary: We show that states obtained from deep random Clifford circuits doped with non-Clifford phase gates can be disentangled completely.<n>This implies that Pauli expectation values of such states can be efficiently simulated classically.<n>We show that this result implies a novel representation of approximate state designs that can also facilitate their efficient generation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that states obtained from deep random Clifford circuits doped with non-Clifford phase gates (including T-gates and $\sqrt{\mathrm{T}}$-gates) can be disentangled completely, provided the number of non-Clifford gates is smaller or approximately equal to the number of qubits. This implies that Pauli expectation values of such states can be efficiently simulated classically, despite them exhibiting both extensive entanglement and extensive nonstabilizerness. We prove this result analytically using a quantum error correction formulation, demonstrate its applicability numerically, and discuss consequences for the disentanglability of states generated through Hamiltonian dynamics. We show that this result implies a novel representation of approximate state designs that can also facilitate their efficient generation, and we propose a novel quantum circuit compression scheme for Clifford circuits doped with non-Clifford phase gates.
Related papers
- Clifford and Non-Clifford Splitting in Quantum Circuits: Applications and ZX-Calculus Detection Procedure [49.1574468325115]
We propose and analyze use cases that come from quantum circuits that can be written as product between a Clifford and a Non-Clifford unitary.<n>We make use of ZX-Calculus and its assets to detect a limiting border of these circuits that would allow for a separation between a Clifford section and a Non-Clifford section.
arXiv Detail & Related papers (2025-04-22T16:10:34Z) - When Clifford benchmarks are sufficient; estimating application performance with scalable proxy circuits [0.0]
We show that for a broad class of error models these concerns are unwarranted.<n>We show that for error models that admit noise tailoring by Pauli twirling, the diamond norm and fidelity of any generic circuit is well approximated by the fidelities of proxy circuits composed only of Clifford gates.
arXiv Detail & Related papers (2025-03-07T21:18:59Z) - Anticoncentration in Clifford Circuits and Beyond: From Random Tensor Networks to Pseudo-Magic States [0.0]
Anticoncentration describes how an ensemble of quantum states spreads over the allowed Hilbert space.<n>We investigate the anticoncentration of random Clifford circuits toward the overlap distribution of random stabilizer states.<n>We show that inserting a polylogarithmic in qudit number of $T$-states is sufficient to drive the overlap distribution toward the Porter-Thomas statistics.
arXiv Detail & Related papers (2025-02-27T19:00:29Z) - Dynamical simulations of many-body quantum chaos on a quantum computer [3.731709137507907]
We study a class of maximally chaotic circuits known as dual unitary circuits.
We show that a superconducting quantum processor with 91 qubits is able to accurately simulate these correlators.
We then probe dynamics beyond exact verification, by perturbing the circuits away from the dual unitary point.
arXiv Detail & Related papers (2024-11-01T17:57:13Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Hybrid Stabilizer Matrix Product Operator [44.99833362998488]
We introduce a novel hybrid approach combining tensor network methods with the stabilizer formalism to address the challenges of simulating many-body quantum systems.
We demonstrate the effectiveness of our method through applications to random Clifford T-doped circuits and Random Clifford Floquet Dynamics.
arXiv Detail & Related papers (2024-05-09T18:32:10Z) - Scalable simulation of non-equilibrium quantum dynamics via classically optimised unitary circuits [0.0]
We show how to optimise unitary brickwall circuits to approximate quantum time evolution operators.
We demonstrate that, for various three-body Hamiltonians, our approach produces quantum circuits that can outperform Trotterization in both their accuracy and the quantum circuit depth needed to implement the dynamics.
We also explain how to choose an optimal time step that minimises the combined errors of the quantum device and the brickwall circuit approximation.
arXiv Detail & Related papers (2023-12-21T19:00:35Z) - Extending Classically Simulatable Bounds of Clifford Circuits with Nonstabilizer States via Framed Wigner Functions [3.9482012852779085]
Wigner function formalism has played a pivotal role in examining the non-classical aspects of quantum states and their classical simulatability.<n>We propose a novel classical simulation method for qubit Clifford circuits based on the framed Wigner function.
arXiv Detail & Related papers (2023-07-31T14:02:33Z) - Simulating quantum circuit expectation values by Clifford perturbation
theory [0.0]
We consider the expectation value problem for circuits composed of Clifford gates and non-Clifford Pauli rotations.
We introduce a perturbative approach based on the truncation of the exponentially growing sum of Pauli terms in the Heisenberg picture.
Results indicate that this systematically improvable perturbative method offers a viable alternative to exact methods for approxing expectation values of large near-Clifford circuits.
arXiv Detail & Related papers (2023-06-07T21:42:10Z) - Partitioning Quantum Chemistry Simulations with Clifford Circuits [1.0286890995028481]
Current quantum computing hardware is restricted by the availability of only few, noisy qubits.
We investigate the limits of their classical and near-classical treatment while staying within the framework of quantum circuits.
arXiv Detail & Related papers (2023-03-02T13:05:19Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
We find an efficient method to compute the cost function and its variance for a wide class of variational quantum circuits.
This method can be used to certify trainability for variational quantum circuits and explore design strategies that can overcome the barren plateau problem.
arXiv Detail & Related papers (2023-02-09T14:05:18Z) - Sparse random Hamiltonians are quantumly easy [105.6788971265845]
A candidate application for quantum computers is to simulate the low-temperature properties of quantum systems.
This paper shows that, for most random Hamiltonians, the maximally mixed state is a sufficiently good trial state.
Phase estimation efficiently prepares states with energy arbitrarily close to the ground energy.
arXiv Detail & Related papers (2023-02-07T10:57:36Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Classical circuits can simulate quantum aspects [0.0]
This study introduces a method for simulating quantum systems using electrical networks.
By synthesizing interaction networks, we accurately simulate quantum systems of varying complexity, from $2-$state to $n-$state systems.
arXiv Detail & Related papers (2022-09-19T18:42:06Z) - A single $T$-gate makes distribution learning hard [56.045224655472865]
This work provides an extensive characterization of the learnability of the output distributions of local quantum circuits.
We show that for a wide variety of the most practically relevant learning algorithms -- including hybrid-quantum classical algorithms -- even the generative modelling problem associated with depth $d=omega(log(n))$ Clifford circuits is hard.
arXiv Detail & Related papers (2022-07-07T08:04:15Z) - Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits [63.83649593474856]
Variational quantum circuits have been widely employed in quantum simulation and quantum machine learning in recent years.<n>However, quantum circuits with random structures have poor trainability due to the exponentially vanishing gradient with respect to the circuit depth and the qubit number.<n>This result leads to a general standpoint that deep quantum circuits would not be feasible for practical tasks.
arXiv Detail & Related papers (2022-03-17T15:06:40Z) - Absolutely Stable Spatiotemporal Order in Noisy Quantum Systems [0.0]
We introduce a model of non-unitary quantum dynamics that exhibits infinitely long-lived discrete order robust against any unitary or dissipative perturbation.
We demonstrate our claims using numerical simulations of a Clifford circuit in two spatial dimensions.
arXiv Detail & Related papers (2021-11-03T19:52:15Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Hardware-Encoding Grid States in a Non-Reciprocal Superconducting
Circuit [62.997667081978825]
We present a circuit design composed of a non-reciprocal device and Josephson junctions whose ground space is doubly degenerate and the ground states are approximate codewords of the Gottesman-Kitaev-Preskill (GKP) code.
We find that the circuit is naturally protected against the common noise channels in superconducting circuits, such as charge and flux noise, implying that it can be used for passive quantum error correction.
arXiv Detail & Related papers (2020-02-18T16:45:09Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.