論文の概要: DA-Ada: Learning Domain-Aware Adapter for Domain Adaptive Object Detection
- arxiv url: http://arxiv.org/abs/2410.09004v1
- Date: Fri, 11 Oct 2024 17:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 20:36:41.679856
- Title: DA-Ada: Learning Domain-Aware Adapter for Domain Adaptive Object Detection
- Title(参考訳): DA-Ada:Domain Adaptive Object DetectionのためのDomain-Aware Adapterを学習する
- Authors: Haochen Li, Rui Zhang, Hantao Yao, Xin Zhang, Yifan Hao, Xinkai Song, Xiaqing Li, Yongwei Zhao, Ling Li, Yunji Chen,
- Abstract要約: ドメイン適応オブジェクト検出(DAOD)は、注釈付きソースドメインで訓練された検出器を、未ラベルのターゲットドメインに一般化することを目的としている。
本稿では,適応化タスクに適した新しいドメイン・アウェア・アダプタ(DA-Ada)を提案する。
- 参考スコア(独自算出の注目度): 27.3338868644013
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Domain adaptive object detection (DAOD) aims to generalize detectors trained on an annotated source domain to an unlabelled target domain. As the visual-language models (VLMs) can provide essential general knowledge on unseen images, freezing the visual encoder and inserting a domain-agnostic adapter can learn domain-invariant knowledge for DAOD. However, the domain-agnostic adapter is inevitably biased to the source domain. It discards some beneficial knowledge discriminative on the unlabelled domain, i.e., domain-specific knowledge of the target domain. To solve the issue, we propose a novel Domain-Aware Adapter (DA-Ada) tailored for the DAOD task. The key point is exploiting domain-specific knowledge between the essential general knowledge and domain-invariant knowledge. DA-Ada consists of the Domain-Invariant Adapter (DIA) for learning domain-invariant knowledge and the Domain-Specific Adapter (DSA) for injecting the domain-specific knowledge from the information discarded by the visual encoder. Comprehensive experiments over multiple DAOD tasks show that DA-Ada can efficiently infer a domain-aware visual encoder for boosting domain adaptive object detection. Our code is available at https://github.com/Therock90421/DA-Ada.
- Abstract(参考訳): ドメイン適応オブジェクト検出(DAOD)は、注釈付きソースドメインで訓練された検出器を、未ラベルのターゲットドメインに一般化することを目的としている。
視覚言語モデル(VLM)は、視覚的エンコーダを凍結し、ドメインに依存しないアダプタを挿入することで、DAODのドメイン不変知識を学習することができる。
しかし、ドメインに依存しないアダプタは、必然的にソースドメインに偏っている。
これは、未ラベル領域、すなわち対象領域のドメイン固有の知識を識別する有益な知識を放棄する。
そこで本研究では,DAODタスクに適した新しいドメイン・アウェア・アダプタ(DA-Ada)を提案する。
重要なポイントは、本質的な一般知識とドメイン不変知識の間のドメイン固有の知識を活用することである。
DA-Adaは、ドメイン不変知識を学ぶためのドメイン不変アダプタ(DIA)と、ビジュアルエンコーダによって破棄された情報からドメイン固有知識を注入するドメイン特化アダプタ(DSA)から構成される。
複数のDAODタスクに対する総合的な実験により、DA-Adaはドメイン適応オブジェクト検出を促進するために、ドメイン認識型ビジュアルエンコーダを効率的に推論できることが示されている。
私たちのコードはhttps://github.com/Therock90421/DA-Ada.comで公開されています。
関連論文リスト
- Vision Transformer-based Adversarial Domain Adaptation [5.611768906855499]
視覚変換器(ViT)は出現以来注目され、様々なコンピュータビジョンタスクで広く利用されている。
本稿では,このギャップを,対向領域適応における特徴抽出器としてViTを用いて埋める。
敵領域適応において, ViT がプラグイン・アンド・プレイコンポーネントとなることを実証的に実証した。
論文 参考訳(メタデータ) (2024-04-24T11:41:28Z) - Make the U in UDA Matter: Invariant Consistency Learning for
Unsupervised Domain Adaptation [86.61336696914447]
ICON (Invariant Consistency Learning) の略。
我々は2つの領域に等しくの地位を与えることで、教師なしDAのUを作成することを提案する。
ICON は古典的な UDA ベンチマークである Office-Home と VisDA-2017 で最先端のパフォーマンスを実現し、挑戦的な WILDS 2.0 ベンチマークでは従来の方法よりも優れています。
論文 参考訳(メタデータ) (2023-09-22T09:43:32Z) - Learning Domain-Aware Detection Head with Prompt Tuning [27.597165816077826]
ドメイン適応オブジェクト検出(DAOD)は、注釈付きソースドメインで訓練された検出器を、未ラベルのターゲットドメインに一般化することを目的としている。
本稿では,各領域に対して動的検出ヘッドを生成するために,学習可能なドメイン適応プロンプトを適用したドメイン認識検出ヘッド(DA-Pro)を提案する。
論文 参考訳(メタデータ) (2023-06-09T07:30:10Z) - Domain-Agnostic Prior for Transfer Semantic Segmentation [197.9378107222422]
教師なしドメイン適応(UDA)はコンピュータビジョンコミュニティにおいて重要なトピックである。
ドメインに依存しない事前学習(DAP)を用いてドメイン間表現学習を規則化する機構を提案する。
我々の研究は、UDAがより良いプロキシ、おそらく他のデータモダリティの恩恵を受けていることを明らかにしている。
論文 参考訳(メタデータ) (2022-04-06T09:13:25Z) - Connect, Not Collapse: Explaining Contrastive Learning for Unsupervised
Domain Adaptation [88.5448806952394]
我々は、対象ドメインのラベル付きデータと対象ドメインのラベルなしデータを用いて、対象ドメインの分類器を学習する、教師なしドメイン適応(UDA)を考える。
ラベル付きソースとターゲットデータの特徴を学習し,ラベル付きソースデータに微調整を行うコントラスト事前学習は,強いUDA手法と競合することを示す。
論文 参考訳(メタデータ) (2022-04-01T16:56:26Z) - Decompose to Adapt: Cross-domain Object Detection via Feature
Disentanglement [79.2994130944482]
本研究では,DDF(Domain Disentanglement Faster-RCNN)を設計し,タスク学習のための特徴のソース固有情報を排除した。
DDF法は,グローバルトリプルト・ディアンタングルメント(GTD)モジュールとインスタンス類似性・ディアンタングルメント(ISD)モジュールを用いて,グローバルおよびローカルステージでの機能ディアンタングルを容易にする。
提案手法は,4つのUDAオブジェクト検出タスクにおいて最先端の手法より優れており,広い適用性で有効であることが実証された。
論文 参考訳(メタデータ) (2022-01-06T05:43:01Z) - A Survey of Unsupervised Domain Adaptation for Visual Recognition [2.8935588665357077]
ドメイン適応(DA)は、あるドメインから別のドメインに知識を移す際のドメインシフト問題を緩和することを目的としています。
Unsupervised DA (UDA) はラベル付きソースドメインとラベルなしターゲットドメインを扱う。
論文 参考訳(メタデータ) (2021-12-13T15:55:23Z) - Exploiting Both Domain-specific and Invariant Knowledge via a Win-win
Transformer for Unsupervised Domain Adaptation [14.623272346517794]
Unsupervised Domain Adaptation (UDA)は、ラベル付きソースドメインからラベル付きターゲットドメインに知識を転送することを目的としている。
既存のUDAアプローチのほとんどは、ドメイン不変表現を学習し、2つのドメインにまたがる1つの分類器を共有することによって、知識伝達を可能にする。
我々はWin-Win TRansformerフレームワークを提案し、各ドメインのドメイン固有の知識を別々に探索し、ドメイン間の知識を交換する。
論文 参考訳(メタデータ) (2021-11-25T06:45:07Z) - Open Domain Generalization with Domain-Augmented Meta-Learning [83.59952915761141]
オープンドメイン一般化(OpenDG)の新しい実践的問題について研究する。
本稿では,オープンドメイン一般化表現を学ぶためのメタ学習フレームワークを提案する。
種々のマルチドメインデータセットの実験結果から、提案したドメイン拡張メタラーニング(DAML)が、未確認ドメイン認識の先行手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-04-08T09:12:24Z) - Mind the Gap: Enlarging the Domain Gap in Open Set Domain Adaptation [65.38975706997088]
オープンセットドメイン適応(OSDA)は、ターゲットドメインに未知のクラスが存在することを前提としている。
既存の最先端手法は、より大きなドメインギャップが存在する場合、かなりの性能低下を被ることを示す。
我々は、より大きなドメインギャップに特に対処するための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-08T14:20:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。