論文の概要: CVAM-Pose: Conditional Variational Autoencoder for Multi-Object Monocular Pose Estimation
- arxiv url: http://arxiv.org/abs/2410.09010v1
- Date: Fri, 11 Oct 2024 17:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 20:36:41.668492
- Title: CVAM-Pose: Conditional Variational Autoencoder for Multi-Object Monocular Pose Estimation
- Title(参考訳): CVAM-Pose:多目的単眼球推定のための条件変分オートエンコーダ
- Authors: Jianyu Zhao, Wei Quan, Bogdan J. Matuszewski,
- Abstract要約: 剛体物体のポーズを推定することはコンピュータビジョンの基本的な問題の一つである。
本稿では,多目的単分子ポーズ推定のための新しいアプローチCVAM-Poseを提案する。
- 参考スコア(独自算出の注目度): 3.5379836919221566
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimating rigid objects' poses is one of the fundamental problems in computer vision, with a range of applications across automation and augmented reality. Most existing approaches adopt one network per object class strategy, depend heavily on objects' 3D models, depth data, and employ a time-consuming iterative refinement, which could be impractical for some applications. This paper presents a novel approach, CVAM-Pose, for multi-object monocular pose estimation that addresses these limitations. The CVAM-Pose method employs a label-embedded conditional variational autoencoder network, to implicitly abstract regularised representations of multiple objects in a single low-dimensional latent space. This autoencoding process uses only images captured by a projective camera and is robust to objects' occlusion and scene clutter. The classes of objects are one-hot encoded and embedded throughout the network. The proposed label-embedded pose regression strategy interprets the learnt latent space representations utilising continuous pose representations. Ablation tests and systematic evaluations demonstrate the scalability and efficiency of the CVAM-Pose method for multi-object scenarios. The proposed CVAM-Pose outperforms competing latent space approaches. For example, it is respectively 25% and 20% better than AAE and Multi-Path methods, when evaluated using the $\mathrm{AR_{VSD}}$ metric on the Linemod-Occluded dataset. It also achieves results somewhat comparable to methods reliant on 3D models reported in BOP challenges. Code available: https://github.com/JZhao12/CVAM-Pose
- Abstract(参考訳): 剛体オブジェクトのポーズを推定することはコンピュータビジョンにおける基本的な問題の1つであり、自動化や拡張現実にまたがる様々な応用がある。
既存のほとんどのアプローチでは、オブジェクトの3Dモデルや深度データに大きく依存して、オブジェクトのクラス戦略ごとにひとつのネットワークを採用しています。
本稿では,これらの制約に対処する多目的単分子ポーズ推定のための新しい手法CVAM-Poseを提案する。
CVAM-Pose法はラベル埋め込み型条件付き変分オートエンコーダネットワークを用いて、単一の低次元潜在空間における複数のオブジェクトの正規化表現を暗黙的に抽象化する。
この自動符号化プロセスは、投影カメラによって撮影された画像のみを使用し、オブジェクトの閉塞やシーンの乱れに対して堅牢である。
オブジェクトのクラスは1ホットエンコードされ、ネットワーク全体に埋め込まれます。
ラベル埋め込みされたポーズ回帰戦略は、連続的なポーズ表現を利用した学習された潜在空間表現を解釈する。
多目的シナリオに対するCVAM-Pose法のスケーラビリティと効率性を示す。
提案されたCVAM-Poseは、競合する潜在空間アプローチよりも優れている。
例えば、Linemod-Occludedデータセットの$\mathrm{AR_{VSD}}$メトリックを使用して評価すると、AAEおよびMulti-Pathメソッドよりも25%と20%よい。
また、BOPチャレンジで報告された3Dモデルに依存したメソッドに匹敵する結果が得られる。
コード提供: https://github.com/JZhao12/CVAM-Pose
関連論文リスト
- SEMPose: A Single End-to-end Network for Multi-object Pose Estimation [13.131534219937533]
SEMPoseは、エンドツーエンドの多目的ポーズ推定ネットワークである。
RGB画像以外の入力を必要とせずに32FPSで推論を行うことができる。
複数のオブジェクトのポーズをリアルタイムで正確に推定でき、対象オブジェクトの数の影響を受けない推論時間に影響を及ぼす。
論文 参考訳(メタデータ) (2024-11-21T10:37:54Z) - FoundationPose: Unified 6D Pose Estimation and Tracking of Novel Objects [55.77542145604758]
FoundationPoseは、6Dオブジェクトのポーズ推定と追跡のための統合基盤モデルである。
我々のアプローチは、微調整なしで、テスト時に新しいオブジェクトに即座に適用できる。
論文 参考訳(メタデータ) (2023-12-13T18:28:09Z) - KVN: Keypoints Voting Network with Differentiable RANSAC for Stereo Pose
Estimation [1.1603243575080535]
我々は、よく知られた単分子ポーズ推定ネットワークに微分可能なRANSAC層を導入する。
本稿では, RANSACが提案した層の精度に果たす役割について述べる。
論文 参考訳(メタデータ) (2023-07-21T12:43:07Z) - PoseMatcher: One-shot 6D Object Pose Estimation by Deep Feature Matching [51.142988196855484]
本稿では,PoseMatcherを提案する。
3ビューシステムに基づくオブジェクトと画像のマッチングのための新しいトレーニングパイプラインを作成します。
PoseMatcherは、画像とポイントクラウドの異なる入力モダリティに対応できるように、IO-Layerを導入します。
論文 参考訳(メタデータ) (2023-04-03T21:14:59Z) - MegaPose: 6D Pose Estimation of Novel Objects via Render & Compare [84.80956484848505]
MegaPoseは、トレーニング中に見えない新しいオブジェクトの6Dポーズを推定する方法である。
本稿では,新しいオブジェクトに適用可能なR&Compare戦略に基づく6次元ポーズリファインダを提案する。
第2に,合成レンダリングと同一物体の観察画像間のポーズ誤差をリファインダで補正できるか否かを分類するために訓練されたネットワークを利用する,粗いポーズ推定のための新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-12-13T19:30:03Z) - Simultaneous Multiple Object Detection and Pose Estimation using 3D
Model Infusion with Monocular Vision [21.710141497071373]
複数物体の検出とポーズ推定はコンピュータビジョンの重要なタスクである。
単眼視と3Dモデルを用いた同時ニューラルモデリングを提案する。
我々の同時多重物体検出・ポース推定ネットワーク(SMOPE-Net)は、エンドツーエンドのトレーニング可能なマルチタスクネットワークである。
論文 参考訳(メタデータ) (2022-11-21T05:18:56Z) - CASAPose: Class-Adaptive and Semantic-Aware Multi-Object Pose Estimation [2.861848675707602]
CASAPoseと呼ばれる新しい単一ステージアーキテクチャを提案する。
RGB画像中の複数の異なるオブジェクトのポーズ推定のための2D-3D対応を1パスで決定する。
高速でメモリ効率が高く、複数のオブジェクトに対して高い精度を実現する。
論文 参考訳(メタデータ) (2022-10-11T10:20:01Z) - Generative Category-Level Shape and Pose Estimation with Semantic
Primitives [27.692997522812615]
本稿では,1枚のRGB-D画像からカテゴリレベルのオブジェクト形状とポーズ推定を行う新しいフレームワークを提案する。
カテゴリ内変動に対処するために、様々な形状を統一された潜在空間にエンコードするセマンティックプリミティブ表現を採用する。
提案手法は,実世界のデータセットにおいて,SOTAのポーズ推定性能とより優れた一般化を実現する。
論文 参考訳(メタデータ) (2022-10-03T17:51:54Z) - Unseen Object 6D Pose Estimation: A Benchmark and Baselines [62.8809734237213]
本稿では,新しい物体の6次元ポーズ推定をアルゴリズムで行えるようにするための新しいタスクを提案する。
実画像と合成画像の両方でデータセットを収集し、テストセットで最大48個の未確認オブジェクトを収集する。
エンド・ツー・エンドの3D対応ネットワークをトレーニングすることにより、未確認物体と部分ビューRGBD画像との対応点を高精度かつ効率的に見つけることができる。
論文 参考訳(メタデータ) (2022-06-23T16:29:53Z) - Objects are Different: Flexible Monocular 3D Object Detection [87.82253067302561]
そこで本研究では,乱れたオブジェクトを明示的に分離し,オブジェクト深度推定のための複数のアプローチを適応的に組み合わせたモノクル3次元オブジェクト検出のためのフレキシブルなフレームワークを提案する。
実験の結果,本手法はkittiベンチマークテストセットにおいて,中等度レベルが27%,硬度が30%と,最先端法を27%上回った。
論文 参考訳(メタデータ) (2021-04-06T07:01:28Z) - Supervised Training of Dense Object Nets using Optimal Descriptors for
Industrial Robotic Applications [57.87136703404356]
Florence、Manuelli、TedrakeによるDense Object Nets(DON)は、ロボットコミュニティのための新しいビジュアルオブジェクト表現として高密度オブジェクト記述子を導入した。
本稿では, 物体の3次元モデルを考えると, 記述子空間画像を生成することができ, DON の教師付きトレーニングが可能であることを示す。
産業用物体の6次元グリップ生成のためのトレーニング手法を比較し,新しい教師付きトレーニング手法により,産業関連タスクのピック・アンド・プレイス性能が向上することを示す。
論文 参考訳(メタデータ) (2021-02-16T11:40:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。