論文の概要: An Innovative Attention-based Ensemble System for Credit Card Fraud Detection
- arxiv url: http://arxiv.org/abs/2410.09069v1
- Date: Tue, 1 Oct 2024 09:56:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 16:58:09.735027
- Title: An Innovative Attention-based Ensemble System for Credit Card Fraud Detection
- Title(参考訳): クレジットカード不正検出のためのイノベーティブアテンションに基づくアンサンブルシステム
- Authors: Mehdi Hosseini Chagahi, Niloufar Delfan, Saeed Mohammadi Dashtaki, Behzad Moshiri, Md. Jalil Piran,
- Abstract要約: 本稿では,クレジットカード不正検出のためのユニークな注意に基づくアンサンブルモデルを提案する。
アンサンブルモデルの精度は 99.95% であり、曲線 (AUC) の下の面積は 1 である。
- 参考スコア(独自算出の注目度): 5.486205584465161
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Detecting credit card fraud (CCF) holds significant importance due to its role in safeguarding consumers from unauthorized transactions that have the potential to result in financial detriment and negative impacts on their credit rating. It aids financial institutions in upholding the reliability of their payment mechanisms and circumventing the expensive procedure of compensating for deceitful transactions. The utilization of Artificial Intelligence methodologies demonstrated remarkable efficacy in the identification of credit card fraud instances. Within this study, we present a unique attention-based ensemble model. This model is enhanced by adding an attention layer for integration of first layer classifiers' predictions and a selection layer for choosing the best integrated value. The attention layer is implemented with two aggregation operators: dependent ordered weighted averaging (DOWA) and induced ordered weighted averaging (IOWA). The performance of the IOWA operator is very close to the learning algorithm in neural networks which is based on the gradient descent optimization method, and performing the DOWA operator is based on weakening the classifiers that make outlier predictions compared to other learners. Both operators have a sufficient level of complexity for the recognition of complex patterns. Accuracy and diversity are the two criteria we use for selecting the classifiers whose predictions are to be integrated by the two aggregation operators. Using a bootstrap forest, we identify the 13 most significant features of the dataset that contribute the most to CCF detection and use them to feed the proposed model. Exhibiting its efficacy, the ensemble model attains an accuracy of 99.95% with an area under the curve (AUC) of 1.
- Abstract(参考訳): クレジットカード詐欺(CCF)の検出は、消費者が信用格付けに悪影響を及ぼす可能性のある不正取引から消費者を守るために重要な役割を担っている。
金融機関が支払いメカニズムの信頼性を維持し、不正取引を補償する高価な手続きを回避できるようにする。
人工知能手法の利用はクレジットカード詐欺事件の特定に顕著な効果を示した。
本研究では,ユニークな注意に基づくアンサンブルモデルを提案する。
このモデルは、第一層分類器の予測を統合するための注意層と、最良の統合値を選択するための選択層とを付加することにより強化される。
注意層は、従属重み付き平均化(DOWA)と従属重み付き平均化(IOWA)の2つのアグリゲーション演算子で実装される。
IOWA演算子の性能は、勾配勾配勾配最適化法に基づくニューラルネットワークの学習アルゴリズムに非常に近いが、DOWA演算子の実行は、他の学習者と比較して外れ値予測を行う分類器を弱めることに基づいている。
どちらの作用素も、複雑なパターンを認識するのに十分なレベルの複雑さを持っている。
精度と多様性は、2つの集約演算子によって予測される分類器を選択するために使用する2つの基準である。
ブートストラップフォレストを用いて、CCF検出に最も寄与するデータセットの13の最も重要な特徴を特定し、提案したモデルに給餌する。
有効性を排除したアンサンブルモデルは99.95%の精度を達成し、曲線(AUC)の下の面積は1。
関連論文リスト
- Heterogeneous Graph Auto-Encoder for CreditCard Fraud Detection [0.7864304771129751]
本稿では、金融データの異種グラフ表現に注意機構を応用したグラフニューラルネットワーク(GNN)を用いたクレジットカード不正検出手法を提案する。
提案モデルはグラフセージやFI-GRLなどのベンチマークアルゴリズムより優れており、AUC-PRが0.89、F1スコアが0.81である。
論文 参考訳(メタデータ) (2024-10-10T17:05:27Z) - LoRA-Ensemble: Efficient Uncertainty Modelling for Self-attention Networks [52.46420522934253]
本稿では,自己注意ネットワークのためのパラメータ効率の高いディープアンサンブル手法であるLoRA-Ensembleを紹介する。
全メンバー間で重みを共有できる1つの事前学習型自己注意ネットワークを利用することで、注意投影のために、メンバー固有の低ランク行列を訓練する。
提案手法は明示的なアンサンブルよりも優れたキャリブレーションを示し,様々な予測タスクやデータセットに対して類似あるいは良好な精度を実現する。
論文 参考訳(メタデータ) (2024-05-23T11:10:32Z) - Enhancing Credit Card Fraud Detection A Neural Network and SMOTE Integrated Approach [4.341096233663623]
本研究では、ニューラルネットワーク(NN)とSMOTE(Synthet ic Minority Over-Sampling Technique)を組み合わせて検出性能を向上させる革新的な手法を提案する。
この研究は、クレジットカード取引データに固有の不均衡に対処し、堅牢で正確な不正検出のための技術的進歩に焦点を当てた。
論文 参考訳(メタデータ) (2024-02-27T02:26:04Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
本稿では,複数のアルゴリズムをインテリジェントに組み合わせて不正識別を強化する,最先端のハイブリッドアンサンブル(ENS)機械学習(ML)モデルを提案する。
実験は,284,807件の取引からなる公開クレジットカードデータセットを用いて実施した。
提案したモデルは、99.66%、99.73%、98.56%、99.79%の精度で、それぞれDT、RF、KNN、ENSモデルに完全100%の精度を実現している。
論文 参考訳(メタデータ) (2024-02-22T09:01:42Z) - Explainable Fraud Detection with Deep Symbolic Classification [4.1205832766381985]
分類問題に対するDeep Symbolic Regressionフレームワークの拡張であるDeep Classificationを提案する。
関数は閉形式で簡潔な数学的表現であるため、モデルは1つの分類決定のレベルとモデルの決定過程の両方において本質的に説明可能である。
PaySimデータセットの評価は、最先端のモデルと競合する予測性能を示しながら、説明可能性の観点からそれらを上回っている。
論文 参考訳(メタデータ) (2023-12-01T13:50:55Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Fraud Detection Using Optimized Machine Learning Tools Under Imbalance
Classes [0.304585143845864]
機械学習(ML)ツールのスマートバージョンによる不正検出は、安全性を保証するために不可欠である。
本稿では,4つの最先端ML手法,すなわちロジスティック回帰,決定木,ランダム森林,極端な勾配上昇について検討する。
フィッシングサイトURLとクレジットカード不正取引データセットは、元のデータに基づいてトレーニングされた極端な勾配が、信頼できるパフォーマンスを示していることを示している。
論文 参考訳(メタデータ) (2022-09-04T15:30:23Z) - Be Your Own Neighborhood: Detecting Adversarial Example by the
Neighborhood Relations Built on Self-Supervised Learning [64.78972193105443]
本稿では,予測に有効な新しいAE検出フレームワークを提案する。
AEの異常な関係と拡張バージョンを区別して検出を行う。
表現を抽出し、ラベルを予測するために、既製の自己監視学習(SSL)モデルが使用される。
論文 参考訳(メタデータ) (2022-08-31T08:18:44Z) - The Overlooked Classifier in Human-Object Interaction Recognition [82.20671129356037]
クラス間の意味的相関を分類ヘッドにエンコードし,重みをHOIの言語埋め込みで初期化する。
我々は,LSE-Sign という新しい損失を,長い尾を持つデータセット上でのマルチラベル学習を強化するために提案する。
我々は,物体検出と人間のポーズを明確なマージンで求める最先端技術よりも優れた,検出不要なHOI分類を可能にする。
論文 参考訳(メタデータ) (2022-03-10T23:35:00Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
最近のコンピュータビジョンの進歩は、分類モデルの一般化能力を改善するために、逆データ拡張を利用する。
本稿では,中間的特徴埋め込みにおける敵対的拡張を提唱する効率的かつ効率的な代替手法を提案する。
代表的なバックボーンネットワークを用いて,多様な視覚認識タスクにまたがる提案手法を検証する。
論文 参考訳(メタデータ) (2021-03-22T20:36:34Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
教師なしクラスタリングのためのDual-AAE(Dual-AAE)を提案する。
Dual-AAEの目的関数に対する変分推論を行うことで,一対のオートエンコーダをトレーニングすることで最適化可能な新たな再構成損失を導出する。
4つのベンチマーク実験により、Dual-AAEは最先端のクラスタリング手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-23T13:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。