IceDiff: High Resolution and High-Quality Sea Ice Forecasting with Generative Diffusion Prior
- URL: http://arxiv.org/abs/2410.09111v1
- Date: Thu, 10 Oct 2024 08:53:41 GMT
- Title: IceDiff: High Resolution and High-Quality Sea Ice Forecasting with Generative Diffusion Prior
- Authors: Jingyi Xu, Siwei Tu, Weidong Yang, Shuhao Li, Keyi Liu, Yeqi Luo, Lipeng Ma, Ben Fei, Lei Bai,
- Abstract summary: We propose a two-staged deep learning framework, IceDiff, to forecast sea ice concentration at finer scales.
For the first time, IceDiff demonstrates sea ice forecasting with the 6.25km x 6.25km resolution.
- Score: 19.7258955384779
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Variation of Arctic sea ice has significant impacts on polar ecosystems, transporting routes, coastal communities, and global climate. Tracing the change of sea ice at a finer scale is paramount for both operational applications and scientific studies. Recent pan-Arctic sea ice forecasting methods that leverage advances in artificial intelligence has made promising progress over numerical models. However, forecasting sea ice at higher resolutions is still under-explored. To bridge the gap, we propose a two-staged deep learning framework, IceDiff, to forecast sea ice concentration at finer scales. IceDiff first leverages an independently trained vision transformer to generate coarse yet superior forecasting over previous methods at a regular 25km x 25km grid. This high-quality sea ice forecasting can be utilized as reliable guidance for the next stage. Subsequently, an unconditional diffusion model pre-trained on sea ice concentration maps is utilized for sampling down-scaled sea ice forecasting via a zero-shot guided sampling strategy and a patch-based method. For the first time, IceDiff demonstrates sea ice forecasting with the 6.25km x 6.25km resolution. IceDiff extends the boundary of existing sea ice forecasting models and more importantly, its capability to generate high-resolution sea ice concentration data is vital for pragmatic usages and research.
Related papers
- Unicorn: U-Net for Sea Ice Forecasting with Convolutional Neural Ordinary Differential Equations [6.4020980835163765]
This paper introduces a novel deep architecture named Unicorn, designed to forecast weekly sea ice.
Our model integrates multiple time series images within its architecture to enhance its forecasting performance.
arXiv Detail & Related papers (2024-05-07T01:17:06Z) - FengWu-GHR: Learning the Kilometer-scale Medium-range Global Weather
Forecasting [56.73502043159699]
This work presents FengWu-GHR, the first data-driven global weather forecasting model running at the 0.09$circ$ horizontal resolution.
It introduces a novel approach that opens the door for operating ML-based high-resolution forecasts by inheriting prior knowledge from a low-resolution model.
The hindcast of weather prediction in 2022 indicates that FengWu-GHR is superior to the IFS-HRES.
arXiv Detail & Related papers (2024-01-28T13:23:25Z) - Surrogate Modelling for Sea Ice Concentration using Lightweight Neural
Ensemble [0.3626013617212667]
We propose an adaptive surrogate modeling approach named LANE-SI.
It uses ensemble of relatively simple deep learning models with different loss functions for forecasting of sea ice concentration in the specified water area.
We achieve a 20% improvement against the state-of-the-art physics-based forecast system SEAS5 for the Kara Sea.
arXiv Detail & Related papers (2023-12-07T14:48:30Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
State of the art for physical hazard prediction from weather and climate requires expensive km-scale numerical simulations driven by coarser resolution global inputs.
Here, a generative diffusion architecture is explored for downscaling such global inputs to km-scale, as a cost-effective machine learning alternative.
The model is trained to predict 2km data from a regional weather model over Taiwan, conditioned on a 25km global reanalysis.
arXiv Detail & Related papers (2023-09-24T19:57:22Z) - MT-IceNet -- A Spatial and Multi-Temporal Deep Learning Model for Arctic
Sea Ice Forecasting [0.31410342959104726]
We propose MT-IceNet - a UNet based spatial and multi-temporal (MT) deep learning model for forecasting Arctic sea ice concentration (SIC)
Our proposed model provides promising predictive performance for per-pixel SIC forecasting with up to 60% decrease in prediction error for a lead time of 6 months as compared to its state-of-the-art counterparts.
arXiv Detail & Related papers (2023-08-08T18:18:31Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
Global warming made the Arctic available for marine operations and created demand for reliable operational sea ice forecasts.
In this work, we investigate the performance of the U-Net model trained in two regimes for predicting sea ice for up to the next 10 days.
We show that this deep learning model can outperform simple baselines by a significant margin and improve its quality by using additional weather data and training on multiple regions.
arXiv Detail & Related papers (2022-10-17T09:14:35Z) - Sea Ice Forecasting using Attention-based Ensemble LSTM [4.965782577704965]
We propose an attention-based Long Short Term Memory (LSTM) ensemble method to predict monthly sea ice extent up to 1 month ahead.
Using daily and monthly satellite retrieved sea ice data from NSIDC and atmospheric and oceanic variables from ERA5 reanalysis product for 39 years, we show that our method outperforms several baseline and recently proposed deep learning models.
arXiv Detail & Related papers (2021-07-27T21:37:29Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
We propose SALT: Sea lice Adaptive Lattice Tracking approach for efficient estimation of sea lice dispersion and distribution.
Specifically, an adaptive spatial mesh is generated by merging nodes in the lattice graph of the Ocean Model based on local ocean properties.
The proposed SALT technique shows promise for enhancing proactive aquaculture management through predictive modelling of sea lice infestation pressure maps in a changing climate.
arXiv Detail & Related papers (2021-06-24T17:29:42Z) - Machine Learning for Glacier Monitoring in the Hindu Kush Himalaya [54.12023102155757]
Glacier mapping is key to ecological monitoring in the hkh region.
Climate change poses a risk to individuals whose livelihoods depend on the health of glacier ecosystems.
We present a machine learning based approach to support ecological monitoring, with a focus on glaciers.
arXiv Detail & Related papers (2020-12-09T12:48:06Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
We use a conditional deep convolutional generative adversarial network to predict the geopotential height of the 500 hPa pressure level, the two-meter temperature and the total precipitation for the next 24 hours over Europe.
The proposed models are trained on 4 years of ERA5 reanalysis data from 2015-2018 with the goal to predict the associated meteorological fields in 2019.
arXiv Detail & Related papers (2020-06-13T20:53:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.