Optimizing Hard-to-Place Kidney Allocation: A Machine Learning Approach to Center Ranking
- URL: http://arxiv.org/abs/2410.09116v1
- Date: Thu, 10 Oct 2024 17:15:41 GMT
- Title: Optimizing Hard-to-Place Kidney Allocation: A Machine Learning Approach to Center Ranking
- Authors: Sean Berry, Berk Gorgulu, Sait Tunc, Mucahit Cevik, Matthew J Ellis,
- Abstract summary: This paper proposes a data-driven, machine learning-based ranking system for allocating hard-to-place kidneys to centers.
Our experiments demonstrate that the proposed policy can reduce the average number of centers considered before placement by fourfold for all kidneys and tenfold for hard-to-place kidneys.
- Score: 0.4893345190925178
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Kidney transplantation is the preferred treatment for end-stage renal disease, yet the scarcity of donors and inefficiencies in allocation systems create major bottlenecks, resulting in prolonged wait times and alarming mortality rates. Despite their severe scarcity, timely and effective interventions to prevent non-utilization of life-saving organs remain inadequate. Expedited out-of-sequence placement of hard-to-place kidneys to centers with the highest likelihood of utilizing them has been recommended in the literature as an effective strategy to improve placement success. Nevertheless, current attempts towards this practice is non-standardized and heavily rely on the subjective judgment of the decision-makers. This paper proposes a novel data-driven, machine learning-based ranking system for allocating hard-to-place kidneys to centers with a higher likelihood of accepting and successfully transplanting them. Using the national deceased donor kidney offer and transplant datasets, we construct a unique dataset with donor-, center-, and patient-specific features. We propose a data-driven out-of-sequence placement policy that utilizes machine learning models to predict the acceptance probability of a given kidney by a set of transplant centers, ranking them accordingly based on their likelihood of acceptance. Our experiments demonstrate that the proposed policy can reduce the average number of centers considered before placement by fourfold for all kidneys and tenfold for hard-to-place kidneys. This significant reduction indicates that our method can improve the utilization of hard-to-place kidneys and accelerate their acceptance, ultimately reducing patient mortality and the risk of graft failure. Further, we utilize machine learning interpretability tools to provide insights into factors influencing the kidney allocation decisions.
Related papers
- Predicting Long-Term Allograft Survival in Liver Transplant Recipients [11.680219281917076]
Liver allograft failure occurs in approximately 20% of liver transplant recipients within five years post-transplant.
We introduce the Model for Allograft Survival (MAS), a simple linear risk score that outperforms other advanced survival models.
arXiv Detail & Related papers (2024-08-10T04:44:36Z) - Penalties and Rewards for Fair Learning in Paired Kidney Exchange
Programs [4.963350442999301]
A kidney exchange program, also called a kidney paired donation program, can be viewed as a repeated, dynamic trading and allocation mechanism.
We confirm this hypothesis using a full scale simulation of the Canadian Kidney Paired Donation Program.
We find that the most critical factor in determining the performance of a kidney exchange program is not the judicious assignment of positive weights (rewards) to patient-donor pairs.
arXiv Detail & Related papers (2023-09-23T16:25:49Z) - A Transformer-Based Deep Learning Approach for Fairly Predicting
Post-Liver Transplant Risk Factors [19.00784227522497]
Liver transplantation is a life-saving procedure for patients with end-stage liver disease.
Current scoring system evaluates a patient's mortality risk if not receiving an organ within 90 days.
Post-transplant risk factors, such as cardiovascular disease, chronic rejection, etc., are common complications after transplant.
arXiv Detail & Related papers (2023-04-05T22:54:26Z) - Fairly Predicting Graft Failure in Liver Transplant for Organ Assigning [61.30094367351618]
Liver transplant is an essential therapy performed for severe liver diseases.
Machine learning models could be unfair and trigger bias against certain groups of people.
This work proposes a fair machine learning framework targeting graft failure prediction in liver transplant.
arXiv Detail & Related papers (2023-02-18T18:24:58Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
We propose to leverage transfer learning from large datasets annotated by radiologists, to predict the histological score available on a small annex dataset.
We compare different pretraining methods, namely weakly-supervised and self-supervised ones, to improve the prediction of the cirrhosis.
This method outperforms the baseline classification of the METAVIR score, reaching an AUC of 0.84 and a balanced accuracy of 0.75.
arXiv Detail & Related papers (2023-02-16T17:06:23Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - Predicting Kidney Transplant Survival using Multiple Feature
Representations for HLAs [5.081264894734788]
We propose new biologically-relevant feature representations for incorporating HLA information into machine learning-based survival analysis algorithms.
We evaluate our proposed HLA feature representations on a database of over 100,000 transplants and find that they improve prediction accuracy by about 1%.
arXiv Detail & Related papers (2021-03-04T20:22:47Z) - Learning $\mathbf{\mathit{Matching}}$ Representations for Individualized
Organ Transplantation Allocation [98.43063331640538]
We formulate the problem of learning data-driven rules for organ matching using observational data for organ allocations and transplant outcomes.
We propose a model based on representation learning to predict donor-recipient compatibility.
Our model outperforms state-of-art allocation methods and policies executed by human experts.
arXiv Detail & Related papers (2021-01-28T01:33:21Z) - Adapting a Kidney Exchange Algorithm to Align with Human Values [59.395925461012126]
We provide an end-to-end methodology for estimating weights of individual participant profiles in a kidney exchange.
We show how to use these weights in kidney exchange market clearing algorithms.
arXiv Detail & Related papers (2020-05-19T21:00:29Z) - Automatic Data Augmentation via Deep Reinforcement Learning for
Effective Kidney Tumor Segmentation [57.78765460295249]
We develop a novel automatic learning-based data augmentation method for medical image segmentation.
In our method, we innovatively combine the data augmentation module and the subsequent segmentation module in an end-to-end training manner with a consistent loss.
We extensively evaluated our method on CT kidney tumor segmentation which validated the promising results of our method.
arXiv Detail & Related papers (2020-02-22T14:10:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.