論文の概要: SoK: Verifiable Cross-Silo FL
- arxiv url: http://arxiv.org/abs/2410.09124v1
- Date: Fri, 11 Oct 2024 07:39:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 16:13:24.706944
- Title: SoK: Verifiable Cross-Silo FL
- Title(参考訳): SoK: クロスサイロFLの検証
- Authors: Aleksei Korneev, Jan Ramon,
- Abstract要約: 検証可能なクロスサイロFLに関する知識の体系化を提案する。
我々は、様々なプロトコルを分析し、それらを分類に適合させ、それらの効率と脅威モデルと比較する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) is a widespread approach that allows training machine learning (ML) models with data distributed across multiple devices. In cross-silo FL, which often appears in domains like healthcare or finance, the number of participants is moderate, and each party typically represents a well-known organization. For instance, in medicine data owners are often hospitals or data hubs which are well-established entities. However, malicious parties may still attempt to disturb the training procedure in order to obtain certain benefits, for example, a biased result or a reduction in computational load. While one can easily detect a malicious agent when data used for training is public, the problem becomes much more acute when it is necessary to maintain the privacy of the training dataset. To address this issue, there is recently growing interest in developing verifiable protocols, where one can check that parties do not deviate from the training procedure and perform computations correctly. In this paper, we present a systematization of knowledge on verifiable cross-silo FL. We analyze various protocols, fit them in a taxonomy, and compare their efficiency and threat models. We also analyze Zero-Knowledge Proof (ZKP) schemes and discuss how their overall cost in a FL context can be minimized. Lastly, we identify research gaps and discuss potential directions for future scientific work.
- Abstract(参考訳): Federated Learning(FL)は、複数のデバイスに分散したデータによる機械学習(ML)モデルのトレーニングを可能にする、広範なアプローチである。
医療や金融などの分野でよく見られるクロスサイロFLでは、参加者の数は適度であり、各党は通常よく知られた組織を表している。
例えば、医療データ所有者は、よく確立されたエンティティである病院やデータハブである。
しかし、悪意のある当事者は、例えばバイアスのある結果や計算負荷の削減といった特定の利益を得るために、トレーニング手順を妨害しようとするかもしれない。
トレーニングに使用されるデータが公開されている場合、悪意のあるエージェントを容易に検出できるが、トレーニングデータセットのプライバシを維持する必要がある場合には、問題はさらに深刻になる。
この問題に対処するため、最近は検証可能なプロトコルの開発への関心が高まっている。
本稿では,検証可能なクロスサイロFLに関する知識の体系化について述べる。
我々は、様々なプロトコルを分析し、それらを分類に適合させ、それらの効率と脅威モデルと比較する。
また,Zero-Knowledge Proof (ZKP) のスキームを分析し,FLコンテキストにおける全体的なコストを最小化する方法について論じる。
最後に,研究ギャップを特定し,今後の科学的研究の方向性について議論する。
関連論文リスト
- Accurate Forgetting for Heterogeneous Federated Continual Learning [89.08735771893608]
提案手法は,フェデレーションネットワークにおける従来の知識を選択的に活用する新しい生成再生手法である。
我々は,従来の知識の信頼性を定量化するために,正規化フローモデルに基づく確率的フレームワークを用いる。
論文 参考訳(メタデータ) (2025-02-20T02:35:17Z) - Future-Proofing Medical Imaging with Privacy-Preserving Federated Learning and Uncertainty Quantification: A Review [14.88874727211064]
AIはすぐに、病気の診断、予後、治療計画、治療後の監視のための臨床実践のルーチンになるかもしれない。
患者のデータを取り巻くプライバシー上の懸念は、医療画像にAIが広く採用される上で大きな障壁となる。
Federated Learning(FL)は、機密データを共有することなく、AIモデルを協調的にトレーニングするためのソリューションを提供する。
論文 参考訳(メタデータ) (2024-09-24T16:55:32Z) - SoK: Challenges and Opportunities in Federated Unlearning [32.0365189539138]
本論文は、この新興分野における研究動向と課題を特定することを目的として、未学習の未学習文学を深く研究することを目的としている。
論文 参考訳(メタデータ) (2024-03-04T19:35:08Z) - Mitigating Data Injection Attacks on Federated Learning [20.24380409762923]
フェデレートラーニング(Federated Learning)は、複数のエンティティがデータを使ってモデルを協調的にトレーニングすることを可能にするテクニックである。
その利点にもかかわらず、フェデレートされた学習は偽のデータ注入攻撃の影響を受けやすい。
本稿では,フェデレート学習システムにおけるデータインジェクション攻撃の検出と緩和を行う新しい手法を提案する。
論文 参考訳(メタデータ) (2023-12-04T18:26:31Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning(FL)は、多くのローカルノードがトレーニングデータを分散化しながら、中央モデルを協調的にトレーニングする機械学習パラダイムである。
本稿では,未ラベル公開データを利用した一方向オフライン知識蒸留のためのプライバシー保護FLフレームワークを提案する。
我々の技術は、既存のFLアプローチのような分散的で異質なローカルデータを使用するが、より重要なのは、プライバシー漏洩のリスクを著しく低減することです。
論文 参考訳(メタデータ) (2022-10-16T06:44:46Z) - Monitoring Shortcut Learning using Mutual Information [16.17600110257266]
ショートカット学習は、素早い相関を含まない実世界のデータに基づいて評価される。
実験により、MIはメートル法ネットワークのショートカットネットワークとして使用できることが示された。
論文 参考訳(メタデータ) (2022-06-27T03:55:23Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Federated Semi-supervised Medical Image Classification via Inter-client
Relation Matching [58.26619456972598]
フェデレートラーニング(FL)は、ディープ・ネットワークのトレーニングのために、分散医療機関とのコラボレーションで人気が高まっている。
本報告では,実践的かつ困難なFL問題であるtextitFederated Semi-supervised Learning (FSSL)について検討する。
本稿では, 従来の整合性正規化機構を改良し, クライアント間関係マッチング方式を提案する。
論文 参考訳(メタデータ) (2021-06-16T07:58:00Z) - Private Cross-Silo Federated Learning for Extracting Vaccine Adverse
Event Mentions [0.7349727826230862]
Federated Learning(FL)は、ユーザーが物理的にデータを共有せずにグローバルモデルを共同トレーニングするためのゴト分散トレーニングパラダイムです。
FLベースのトレーニングで得られたさまざまな利点の次元の包括的な実証的分析を紹介します。
ローカルDPは,グローバルモデルの予測精度を著しく損なう可能性を示し,ユーザによるフェデレーションへの参加を阻害する。
論文 参考訳(メタデータ) (2021-03-12T19:20:33Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z) - WAFFLe: Weight Anonymized Factorization for Federated Learning [88.44939168851721]
データが機密性やプライベート性を持つドメインでは、ローカルデバイスを離れることなく、分散的に学習できるメソッドには大きな価値があります。
本稿では,フェデレートラーニングのためのウェイト匿名化因子化(WAFFLe)を提案する。これは,インド・バフェット・プロセスとニューラルネットワークの重み要因の共有辞書を組み合わせたアプローチである。
論文 参考訳(メタデータ) (2020-08-13T04:26:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。