Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection
- URL: http://arxiv.org/abs/2410.09250v1
- Date: Fri, 11 Oct 2024 20:52:10 GMT
- Title: Quantum-Trained Convolutional Neural Network for Deepfake Audio Detection
- Authors: Chu-Hsuan Abraham Lin, Chen-Yu Liu, Samuel Yen-Chi Chen, Kuan-Cheng Chen,
- Abstract summary: deepfake technologies pose challenges to privacy, security, and information integrity.
This paper introduces a Quantum-Trained Convolutional Neural Network framework designed to enhance the detection of deepfake audio.
- Score: 3.2927352068925444
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rise of deepfake technologies has posed significant challenges to privacy, security, and information integrity, particularly in audio and multimedia content. This paper introduces a Quantum-Trained Convolutional Neural Network (QT-CNN) framework designed to enhance the detection of deepfake audio, leveraging the computational power of quantum machine learning (QML). The QT-CNN employs a hybrid quantum-classical approach, integrating Quantum Neural Networks (QNNs) with classical neural architectures to optimize training efficiency while reducing the number of trainable parameters. Our method incorporates a novel quantum-to-classical parameter mapping that effectively utilizes quantum states to enhance the expressive power of the model, achieving up to 70% parameter reduction compared to classical models without compromising accuracy. Data pre-processing involved extracting essential audio features, label encoding, feature scaling, and constructing sequential datasets for robust model evaluation. Experimental results demonstrate that the QT-CNN achieves comparable performance to traditional CNNs, maintaining high accuracy during training and testing phases across varying configurations of QNN blocks. The QT framework's ability to reduce computational overhead while maintaining performance underscores its potential for real-world applications in deepfake detection and other resource-constrained scenarios. This work highlights the practical benefits of integrating quantum computing into artificial intelligence, offering a scalable and efficient approach to advancing deepfake detection technologies.
Related papers
- CTRQNets & LQNets: Continuous Time Recurrent and Liquid Quantum Neural Networks [76.53016529061821]
Liquid Quantum Neural Network (LQNet) and Continuous Time Recurrent Quantum Neural Network (CTRQNet) developed.
LQNet and CTRQNet achieve accuracy increases as high as 40% on CIFAR 10 through binary classification.
arXiv Detail & Related papers (2024-08-28T00:56:03Z) - Quantum-Train: Rethinking Hybrid Quantum-Classical Machine Learning in the Model Compression Perspective [7.7063925534143705]
We introduce the Quantum-Train(QT) framework, a novel approach that integrates quantum computing with machine learning algorithms.
QT achieves remarkable results by employing a quantum neural network alongside a classical mapping model.
arXiv Detail & Related papers (2024-05-18T14:35:57Z) - Quantum Mixed-State Self-Attention Network [3.1280831148667105]
This paper introduces a novel Quantum Mixed-State Attention Network (QMSAN), which integrates the principles of quantum computing with classical machine learning algorithms.
QMSAN model employs a quantum attention mechanism based on mixed states, enabling efficient direct estimation of similarity between queries and keys within the quantum domain.
Our study investigates the model's robustness in different quantum noise environments, showing that QMSAN possesses commendable robustness to low noise.
arXiv Detail & Related papers (2024-03-05T11:29:05Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Studying the Impact of Quantum-Specific Hyperparameters on Hybrid Quantum-Classical Neural Networks [4.951980887762045]
hybrid quantum-classical neural networks (HQNNs) represent a promising solution that combines the strengths of classical machine learning with quantum computing capabilities.
In this paper, we investigate the impact of these variations on different HQNN models for image classification tasks, implemented on the PennyLane framework.
We aim to uncover intuitive and counter-intuitive learning patterns of HQNN models within granular levels of controlled quantum perturbations, to form a sound basis for their correlation to accuracy and training time.
arXiv Detail & Related papers (2024-02-16T11:44:25Z) - Bridging Classical and Quantum Machine Learning: Knowledge Transfer From
Classical to Quantum Neural Networks Using Knowledge Distillation [0.0]
This paper introduces a new method to transfer knowledge from classical to quantum neural networks using knowledge distillation.
We adapt classical convolutional neural network (CNN) architectures like LeNet and AlexNet to serve as teacher networks.
Quantum models achieve an average accuracy improvement of 0.80% on the MNIST dataset and 5.40% on the more complex Fashion MNIST dataset.
arXiv Detail & Related papers (2023-11-23T05:06:43Z) - Problem-Dependent Power of Quantum Neural Networks on Multi-Class
Classification [83.20479832949069]
Quantum neural networks (QNNs) have become an important tool for understanding the physical world, but their advantages and limitations are not fully understood.
Here we investigate the problem-dependent power of QCs on multi-class classification tasks.
Our work sheds light on the problem-dependent power of QNNs and offers a practical tool for evaluating their potential merit.
arXiv Detail & Related papers (2022-12-29T10:46:40Z) - Quantization-aware Interval Bound Propagation for Training Certifiably
Robust Quantized Neural Networks [58.195261590442406]
We study the problem of training and certifying adversarially robust quantized neural networks (QNNs)
Recent work has shown that floating-point neural networks that have been verified to be robust can become vulnerable to adversarial attacks after quantization.
We present quantization-aware interval bound propagation (QA-IBP), a novel method for training robust QNNs.
arXiv Detail & Related papers (2022-11-29T13:32:38Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - Quantum neural networks with deep residual learning [29.929891641757273]
In this paper, a novel quantum neural network with deep residual learning (ResQNN) is proposed.
Our ResQNN is able to learn an unknown unitary and get remarkable performance.
arXiv Detail & Related papers (2020-12-14T18:11:07Z) - Decentralizing Feature Extraction with Quantum Convolutional Neural
Network for Automatic Speech Recognition [101.69873988328808]
We build upon a quantum convolutional neural network (QCNN) composed of a quantum circuit encoder for feature extraction.
An input speech is first up-streamed to a quantum computing server to extract Mel-spectrogram.
The corresponding convolutional features are encoded using a quantum circuit algorithm with random parameters.
The encoded features are then down-streamed to the local RNN model for the final recognition.
arXiv Detail & Related papers (2020-10-26T03:36:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.