論文の概要: Predicting Drug Effects from High-Dimensional, Asymmetric Drug Datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction
- arxiv url: http://arxiv.org/abs/2410.09280v1
- Date: Fri, 11 Oct 2024 22:09:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:23:18.126017
- Title: Predicting Drug Effects from High-Dimensional, Asymmetric Drug Datasets by Using Graph Neural Networks: A Comprehensive Analysis of Multitarget Drug Effect Prediction
- Title(参考訳): グラフニューラルネットワークを用いた高次元非対称薬物データセットからの薬物効果予測:マルチターゲット薬物効果予測の包括的解析
- Authors: Avishek Bose, Guojing Cong,
- Abstract要約: グラフニューラルネットワーク(GNN)は、薬物分子グラフから薬物効果を予測する最も効果的なML手法の1つである。
膨大な可能性を秘めているにもかかわらず、GNNモデルは高次元、非対称的に共起する薬物効果を含むデータセットを使用する際の性能を欠いている。
そこで本稿では, 与えられた不均衡な分子グラフデータセットの多重ラベル分類性能を改善するために, 新たなデータオーバーサンプリング手法を提案する。
- 参考スコア(独自算出の注目度): 1.1970409518725493
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph neural networks (GNNs) have emerged as one of the most effective ML techniques for drug effect prediction from drug molecular graphs. Despite having immense potential, GNN models lack performance when using datasets that contain high-dimensional, asymmetrically co-occurrent drug effects as targets with complex correlations between them. Training individual learning models for each drug effect and incorporating every prediction result for a wide spectrum of drug effects are impractical. Therefore, an opportunity exists to address this challenge as multitarget prediction problems and predict all drug effects at a time. We developed standard and hybrid GNNs to perform two separate tasks: multiregression for continuous values and multilabel classification for categorical values contained in our datasets. Because multilabel classification makes the target data even more sparse and introduces asymmetric label co-occurrence, learning these models becomes difficult and heavily impacts the GNN's performance. To address these challenges, we propose a new data oversampling technique to improve multilabel classification performances on all the given imbalanced molecular graph datasets. Using the technique, we improve the data imbalance ratio of the drug effects while protecting the datasets' integrity. Finally, we evaluate the multilabel classification performance of the best-performing hybrid GNN model on all the oversampled datasets obtained from the proposed oversampling technique. In all the evaluation metrics (i.e., precision, recall, and F1 score), this model significantly outperforms other ML models, including GNN models when they are trained on the original datasets or oversampled datasets with MLSMOTE, which is a well-known oversampling technique.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、薬物分子グラフから薬物効果を予測する最も効果的なML手法の1つである。
膨大な可能性にもかかわらず、GNNモデルは、高次元、非対称的に共起する薬物効果を含むデータセットをそれらの間に複雑な相関を持つターゲットとして使用する際に、性能を欠いている。
各薬物効果の個別学習モデルを訓練し、幅広い薬物効果の予測結果を取り入れることは現実的ではない。
したがって、この課題をマルチターゲット予測問題として解決し、同時に全ての薬物効果を予測する機会がある。
我々は、連続値のマルチ回帰と、データセットに含まれるカテゴリ値のマルチラベル分類という、2つの異なるタスクを実行するための標準およびハイブリッドGNNを開発した。
マルチラベル分類により、ターゲットデータはさらに疎くなり、非対称なラベル共起がもたらされるため、これらのモデルの学習は困難になり、GNNのパフォーマンスに大きな影響を及ぼす。
これらの課題に対処するために、与えられた不均衡な分子グラフデータセットの多重ラベル分類性能を改善するために、新しいデータオーバーサンプリング手法を提案する。
本手法を用いて,データセットの整合性を確保しつつ,薬物効果のデータの不均衡比を改善する。
最後に,提案手法により得られた全データセットに対して,ベストパフォーマンスのハイブリッドGNNモデルのマルチラベル分類性能を評価する。
全ての評価指標(精度、リコール、F1スコアなど)において、このモデルは、GNNモデルを含む他のMLモデルよりも大幅に優れている。
関連論文リスト
- Artificial Data Point Generation in Clustered Latent Space for Small
Medical Datasets [4.542616945567623]
本稿では,クラスタ化潜在空間(AGCL)における人工データポイント生成手法を提案する。
AGCLは、合成データ生成により、小さな医療データセットの分類性能を向上させるように設計されている。
顔の表情データを利用してパーキンソン病検診に応用した。
論文 参考訳(メタデータ) (2024-09-26T09:51:08Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
不均一グラフニューラルネットワーク(HGNN)は、異種グラフを深層学習するための強力なツールである。
最近のプリ計算ベースのHGNNは、一時間メッセージパッシングを使用して不均一グラフを正規形テンソルに変換する。
我々はRandom Projection Heterogeneous Graph Neural Network (RpHGNN) というハイブリッド計算前HGNNを提案する。
論文 参考訳(メタデータ) (2023-10-23T01:25:44Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
この研究は、データハンドリング、実験設計、モデル評価に関するベストプラクティスを要約し、厳密に観察する。
我々は、アルツハイマー病(AD)の検出に焦点を当て、医療における課題のパラダイム的な例として機能する。
このフレームワークでは,3つの異なるデータ拡張戦略と5つの異なる3D CNNアーキテクチャを考慮し,予測15モデルを訓練する。
論文 参考訳(メタデータ) (2023-09-13T10:40:41Z) - Drug Synergistic Combinations Predictions via Large-Scale Pre-Training
and Graph Structure Learning [82.93806087715507]
薬物併用療法は、より有効で安全性の低い疾患治療のための確立された戦略である。
ディープラーニングモデルは、シナジスティックな組み合わせを発見する効率的な方法として登場した。
我々のフレームワークは、他のディープラーニングベースの手法と比較して最先端の結果を達成する。
論文 参考訳(メタデータ) (2023-01-14T15:07:43Z) - Semi-Supervised Heterogeneous Graph Learning with Multi-level Data
Augmentation [8.697773215048286]
本稿では,HG-MDAを用いた半教師付き異種グラフ学習法を提案する。
DAにおける情報の不均一性の問題として,ノードとトポロジの増大戦略を提案する。
HG-MDAはインターネットファイナンスシナリオのユーザ識別に適用され、ビジネスが30%のキーユーザーを追加するのに役立つ。
論文 参考訳(メタデータ) (2022-11-30T14:35:58Z) - Resisting Graph Adversarial Attack via Cooperative Homophilous
Augmentation [60.50994154879244]
最近の研究では、グラフニューラルネットワークは弱く、小さな摂動によって簡単に騙されることが示されている。
本研究では,グラフインジェクションアタック(Graph Injection Attack)という,新興だが重要な攻撃に焦点を当てる。
本稿では,グラフデータとモデルの協調的同好性増強によるGIAに対する汎用防衛フレームワークCHAGNNを提案する。
論文 参考訳(メタデータ) (2022-11-15T11:44:31Z) - Using Explainable Boosting Machine to Compare Idiographic and Nomothetic
Approaches for Ecological Momentary Assessment Data [2.0824228840987447]
本稿では,非線形解釈型機械学習(ML)モデルを用いた分類問題について検討する。
木々の様々なアンサンブルは、不均衡な合成データセットと実世界のデータセットを用いて線形モデルと比較される。
2つの実世界のデータセットのうちの1つで、知識蒸留法は改善されたAUCスコアを達成する。
論文 参考訳(メタデータ) (2022-04-04T17:56:37Z) - Adversarially-regularized mixed effects deep learning (ARMED) models for
improved interpretability, performance, and generalization on clustered data [0.974672460306765]
混合効果モデルは、クラスタ固有のランダム効果からクラスター不変、集団レベルの固定効果を分離する。
本稿では,既存ネットワークへの3つの非侵襲的な付加を通じて,Adversarially-Regularized Mixed Effects Deep Learning (ARMED)モデルを構築するための汎用フレームワークを提案する。
この枠組みを, シミュレーション, 認知症予後診断, 細胞顕微鏡などの4つの応用に適用し, DFNN, 畳み込みニューラルネットワーク, オートエンコーダに適用した。
論文 参考訳(メタデータ) (2022-02-23T20:58:22Z) - A Statistics and Deep Learning Hybrid Method for Multivariate Time
Series Forecasting and Mortality Modeling [0.0]
Exponential Smoothing Recurrent Neural Network (ES-RNN)は、統計予測モデルとリカレントニューラルネットワークのハイブリッドである。
ES-RNNはMakridakis-4 Forecasting Competitionで絶対誤差を9.4%改善した。
論文 参考訳(メタデータ) (2021-12-16T04:44:19Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - Ensemble Transfer Learning for the Prediction of Anti-Cancer Drug
Response [49.86828302591469]
本稿では,抗がん剤感受性の予測にトランスファーラーニングを適用した。
我々は、ソースデータセット上で予測モデルをトレーニングし、ターゲットデータセット上でそれを洗練する古典的な転送学習フレームワークを適用した。
アンサンブル転送学習パイプラインは、LightGBMと異なるアーキテクチャを持つ2つのディープニューラルネットワーク(DNN)モデルを使用して実装されている。
論文 参考訳(メタデータ) (2020-05-13T20:29:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。