論文の概要: Natural Language Counterfactual Explanations for Graphs Using Large Language Models
- arxiv url: http://arxiv.org/abs/2410.09295v2
- Date: Mon, 27 Jan 2025 13:30:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-28 13:52:45.490275
- Title: Natural Language Counterfactual Explanations for Graphs Using Large Language Models
- Title(参考訳): 大規模言語モデルを用いたグラフの自然言語対実説明
- Authors: Flavio Giorgi, Cesare Campagnano, Fabrizio Silvestri, Gabriele Tolomei,
- Abstract要約: 我々は、オープンソースのLarge Language Modelsの力を利用して、自然言語の説明を生成する。
提案手法は, 対実例の正確な自然言語表現を効果的に生成することを示す。
- 参考スコア(独自算出の注目度): 7.560731917128082
- License:
- Abstract: Explainable Artificial Intelligence (XAI) has emerged as a critical area of research to unravel the opaque inner logic of (deep) machine learning models. Among the various XAI techniques proposed in the literature, counterfactual explanations stand out as one of the most promising approaches. However, these "what-if" explanations are frequently complex and technical, making them difficult for non-experts to understand and, more broadly, challenging for humans to interpret. To bridge this gap, in this work, we exploit the power of open-source Large Language Models to generate natural language explanations when prompted with valid counterfactual instances produced by state-of-the-art explainers for graph-based models. Experiments across several graph datasets and counterfactual explainers show that our approach effectively produces accurate natural language representations of counterfactual instances, as demonstrated by key performance metrics.
- Abstract(参考訳): 説明可能な人工知能(XAI)は、(ディープ)機械学習モデルの不透明な内部ロジックを解き放つために重要な研究領域として登場した。
文献で提案されている様々なXAI技術の中で、最も有望なアプローチの1つとして反実的な説明が際立っている。
しかしながら、これらの「何」の説明は、しばしば複雑で技術的であり、非専門家が理解しにくく、より広く、人間が解釈することを困難にしている。
このギャップを埋めるために、我々はオープンソースのLarge Language Modelsのパワーを利用して、グラフベースのモデルに対する最先端の説明器によって生成された有効な反実例によって、自然言語の説明を生成する。
いくつかのグラフデータセットと反ファクト的説明器を用いた実験により,本手法は,主要なパフォーマンス指標で示されるように,反ファクト的事例の正確な自然言語表現を効果的に生成することを示した。
関連論文リスト
- Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - T-Explainer: A Model-Agnostic Explainability Framework Based on Gradients [5.946429628497358]
T-ExplainerはTaylorの拡張に基づく新しい局所的な帰属説明器である。
局所的精度や一貫性などの望ましい特性があり、T-Explainerは複数の実行で安定している。
論文 参考訳(メタデータ) (2024-04-25T10:40:49Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - Explainability for Large Language Models: A Survey [59.67574757137078]
大規模言語モデル(LLM)は、自然言語処理における印象的な能力を示している。
本稿では,トランスフォーマーに基づく言語モデルを記述する手法について,説明可能性の分類法を紹介した。
論文 参考訳(メタデータ) (2023-09-02T22:14:26Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
本稿では,大規模なプロンプトベース言語モデルであるコーデックスの対角的ロバスト性に関する最初の実証的研究について述べる。
この結果から, 最先端の言語モデル(SOTA)は, 慎重に構築された敵の例に対して脆弱であることが示された。
論文 参考訳(メタデータ) (2023-01-30T13:21:00Z) - Visualizing and Explaining Language Models [0.0]
自然言語処理はコンピュータビジョンの後、人工知能の第2の分野となった。
本稿では,NLPビジュアライゼーションにおいて最もポピュラーなDeep Learningの手法について紹介し,解釈可能性と説明可能性に着目した。
論文 参考訳(メタデータ) (2022-04-30T17:23:33Z) - Syntax-informed Question Answering with Heterogeneous Graph Transformer [2.139714421848487]
本稿では、事前学習されたニューラルネットワークモデルを拡張し、微調整する言語インフォームド質問応答手法を提案する。
本稿では,トークンと仮想トークンを接続する依存関係グラフ構造と領域グラフィック構造という形で,構文情報の追加によるアプローチについて説明する。
論文 参考訳(メタデータ) (2022-04-01T07:48:03Z) - Interpreting Language Models with Contrastive Explanations [99.7035899290924]
言語モデルは、音声、数字、時制、意味論など、トークンを予測するための様々な特徴を考慮しなければならない。
既存の説明手法は、これらの特徴の証拠を1つの説明に分割するが、人間の理解には理解できない。
比較的な説明は、主要な文法現象の検証において、非対照的な説明よりも定量的に優れていることを示す。
論文 参考訳(メタデータ) (2022-02-21T18:32:24Z) - Towards Interpretable Natural Language Understanding with Explanations
as Latent Variables [146.83882632854485]
そこで本研究では,人間に注釈付き説明文の小さなセットだけを必要とする自然言語理解の枠組みを構築した。
我々のフレームワークは、ニューラルネットワークの基本的な推論過程をモデル化する潜在変数として、自然言語の説明を扱う。
論文 参考訳(メタデータ) (2020-10-24T02:05:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。