The 2020 United States Decennial Census Is More Private Than You (Might) Think
- URL: http://arxiv.org/abs/2410.09296v2
- Date: Wed, 29 Jan 2025 18:17:50 GMT
- Title: The 2020 United States Decennial Census Is More Private Than You (Might) Think
- Authors: Buxin Su, Weijie J. Su, Chendi Wang,
- Abstract summary: We show that the 2020 U.S. Census provides significantly stronger privacy protections than its nominal guarantees suggest.
We show that noise variances could be reduced by $15.08%$ to $24.82%$ while maintaining nearly the same level of privacy protection for each geographical level.
- Score: 25.32778927275117
- License:
- Abstract: The U.S. Decennial Census serves as the foundation for many high-profile policy decision-making processes, including federal funding allocation and redistricting. In 2020, the Census Bureau adopted differential privacy to protect the confidentiality of individual responses through a disclosure avoidance system that injects noise into census data tabulations. The Bureau subsequently posed an open question: Could stronger privacy guarantees be obtained for the 2020 U.S. Census compared to their published guarantees, or equivalently, had the privacy budgets been fully utilized? In this paper, we address this question affirmatively by demonstrating that the 2020 U.S. Census provides significantly stronger privacy protections than its nominal guarantees suggest at each of the eight geographical levels, from the national level down to the block level. This finding is enabled by our precise tracking of privacy losses using $f$-differential privacy, applied to the composition of private queries across these geographical levels. Our analysis reveals that the Census Bureau introduced unnecessarily high levels of noise to meet the specified privacy guarantees for the 2020 Census. Consequently, we show that noise variances could be reduced by $15.08\%$ to $24.82\%$ while maintaining nearly the same level of privacy protection for each geographical level, thereby improving the accuracy of privatized census statistics. We empirically demonstrate that reducing noise injection into census statistics mitigates distortion caused by privacy constraints in downstream applications of private census data, illustrated through a study examining the relationship between earnings and education.
Related papers
- Quantifying Privacy Risks of Public Statistics to Residents of Subsidized Housing [28.493827954922885]
We show that respondents in subsidized housing may deliberately not mention unauthorized children and other household members for fear of being evicted.
By combining public statistics from the Decennial Census and the Department of Housing and Urban Development, we demonstrate a simple, inexpensive reconstruction attack.
Our results provide a valuable example for policymakers seeking a trustworthy, accurate census.
arXiv Detail & Related papers (2024-07-05T18:00:02Z) - Noisy Measurements Are Important, the Design of Census Products Is Much More Important [1.52292571922932]
McCartan et al. (2023) call for "making differential privacy work for census data users"
This commentary explains why the 2020 Census Noisy Measurement Files (NMFs) are not the best focus for that plea.
arXiv Detail & Related papers (2023-12-20T15:43:04Z) - Adaptive Privacy Composition for Accuracy-first Mechanisms [55.53725113597539]
Noise reduction mechanisms produce increasingly accurate answers.
Analysts only pay the privacy cost of the least noisy or most accurate answer released.
There has yet to be any study on how ex-post private mechanisms compose.
We develop privacy filters that allow an analyst to adaptively switch between differentially private and ex-post private mechanisms.
arXiv Detail & Related papers (2023-06-24T00:33:34Z) - Evaluating Bias and Noise Induced by the U.S. Census Bureau's Privacy
Protection Methods [0.0]
The U.S. Census Bureau faces a difficult trade-off between the accuracy of Census statistics and the protection of individual information.
We conduct the first independent evaluation of bias and noise induced by the Bureau's two main disclosure avoidance systems.
TopDown's post-processing dramatically reduces the NMF noise and produces data whose accuracy is similar to that of swapping.
arXiv Detail & Related papers (2023-06-13T03:30:19Z) - How Do Input Attributes Impact the Privacy Loss in Differential Privacy? [55.492422758737575]
We study the connection between the per-subject norm in DP neural networks and individual privacy loss.
We introduce a novel metric termed the Privacy Loss-Input Susceptibility (PLIS) which allows one to apportion the subject's privacy loss to their input attributes.
arXiv Detail & Related papers (2022-11-18T11:39:03Z) - Comment: The Essential Role of Policy Evaluation for the 2020 Census
Disclosure Avoidance System [0.0]
boyd and Sarathy, "Differential Perspectives: Epistemic Disconnects Surrounding the US Census Bureau's Use of Differential Privacy"
We argue that empirical evaluations of the Census Disclosure Avoidance System failed to recognize how the benchmark data is never a ground truth of population counts.
We argue that policy makers must confront a key trade-off between data utility and privacy protection.
arXiv Detail & Related papers (2022-10-15T21:41:54Z) - Releasing survey microdata with exact cluster locations and additional
privacy safeguards [77.34726150561087]
We propose an alternative microdata dissemination strategy that leverages the utility of the original microdata with additional privacy safeguards.
Our strategy reduces the respondents' re-identification risk for any number of disclosed attributes by 60-80% even under re-identification attempts.
arXiv Detail & Related papers (2022-05-24T19:37:11Z) - The Impact of the U.S. Census Disclosure Avoidance System on
Redistricting and Voting Rights Analysis [0.0]
The US Census Bureau plans to protect the privacy of 2020 Census respondents through its Disclosure Avoidance System (DAS)
We find that the protected data are not of sufficient quality for redistricting purposes.
Our analysis finds that the DAS-protected data are biased against certain areas, depending on voter turnout and partisan and racial composition.
arXiv Detail & Related papers (2021-05-29T03:32:36Z) - Decision Making with Differential Privacy under a Fairness Lens [65.16089054531395]
The U.S. Census Bureau releases data sets and statistics about groups of individuals that are used as input to a number of critical decision processes.
To conform to privacy and confidentiality requirements, these agencies are often required to release privacy-preserving versions of the data.
This paper studies the release of differentially private data sets and analyzes their impact on some critical resource allocation tasks under a fairness perspective.
arXiv Detail & Related papers (2021-05-16T21:04:19Z) - Differential Privacy of Hierarchical Census Data: An Optimization
Approach [53.29035917495491]
Census Bureaus are interested in releasing aggregate socio-economic data about a large population without revealing sensitive information about any individual.
Recent events have identified some of the privacy challenges faced by these organizations.
This paper presents a novel differential-privacy mechanism for releasing hierarchical counts of individuals.
arXiv Detail & Related papers (2020-06-28T18:19:55Z) - PGLP: Customizable and Rigorous Location Privacy through Policy Graph [68.3736286350014]
We propose a new location privacy notion called PGLP, which provides a rich interface to release private locations with customizable and rigorous privacy guarantee.
Specifically, we formalize a user's location privacy requirements using a textitlocation policy graph, which is expressive and customizable.
Third, we design a private location trace release framework that pipelines the detection of location exposure, policy graph repair, and private trajectory release with customizable and rigorous location privacy.
arXiv Detail & Related papers (2020-05-04T04:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.