Token Pruning using a Lightweight Background Aware Vision Transformer
- URL: http://arxiv.org/abs/2410.09324v1
- Date: Sat, 12 Oct 2024 01:44:54 GMT
- Title: Token Pruning using a Lightweight Background Aware Vision Transformer
- Authors: Sudhakar Sah, Ravish Kumar, Honnesh Rohmetra, Ehsan Saboori,
- Abstract summary: Token pruning reduces the number of input tokens to the ViT based on importance criteria of each token.
Background tokens can be pruned completely or partially before feeding to a ViT based object detector.
We show a 2 layer BAViT-small model as pre-processor to YOLOS can increase the throughput by 30% - 40% with a mAP drop of 3% without any sparse fine-tuning.
- Score: 0.6856888934092934
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High runtime memory and high latency puts significant constraint on Vision Transformer training and inference, especially on edge devices. Token pruning reduces the number of input tokens to the ViT based on importance criteria of each token. We present a Background Aware Vision Transformer (BAViT) model, a pre-processing block to object detection models like DETR/YOLOS aimed to reduce runtime memory and increase throughput by using a novel approach to identify background tokens in the image. The background tokens can be pruned completely or partially before feeding to a ViT based object detector. We use the semantic information provided by segmentation map and/or bounding box annotation to train a few layers of ViT to classify tokens to either foreground or background. Using 2 layers and 10 layers of BAViT, background and foreground tokens can be separated with 75% and 88% accuracy on VOC dataset and 71% and 80% accuracy on COCO dataset respectively. We show a 2 layer BAViT-small model as pre-processor to YOLOS can increase the throughput by 30% - 40% with a mAP drop of 3% without any sparse fine-tuning and 2% with sparse fine-tuning. Our approach is specifically targeted for Edge AI use cases.
Related papers
- ToSA: Token Selective Attention for Efficient Vision Transformers [50.13756218204456]
ToSA is a token selective attention approach that can identify tokens that need to be attended as well as those that can skip a transformer layer.
We show that ToSA can significantly reduce computation costs while maintaining accuracy on the ImageNet classification benchmark.
arXiv Detail & Related papers (2024-06-13T05:17:21Z) - AiluRus: A Scalable ViT Framework for Dense Prediction [95.1313839257891]
Vision transformers (ViTs) have emerged as a prevalent architecture for vision tasks owing to their impressive performance.
We propose to apply adaptive resolution for different regions in the image according to their importance.
We evaluate our proposed method on three different datasets and observe promising performance.
arXiv Detail & Related papers (2023-11-02T12:48:43Z) - No Token Left Behind: Efficient Vision Transformer via Dynamic Token
Idling [55.203866875294516]
Vision Transformers (ViTs) have demonstrated outstanding performance in computer vision tasks.
Various token pruning techniques have been introduced to alleviate the high computational burden of ViTs.
We propose IdleViT, a dynamic token-idle-based method that achieves an excellent trade-off between performance and efficiency.
arXiv Detail & Related papers (2023-10-09T12:10:41Z) - Making Vision Transformers Efficient from A Token Sparsification View [26.42498120556985]
We propose a novel Semantic Token ViT (STViT) for efficient global and local vision transformers.
Our method can achieve competitive results compared to the original networks in object detection and instance segmentation, with over 30% FLOPs reduction for backbone.
In addition, we design a STViT-R(ecover) network to restore the detailed spatial information based on the STViT, making it work for downstream tasks.
arXiv Detail & Related papers (2023-03-15T15:12:36Z) - Vision Transformer with Super Token Sampling [93.70963123497327]
Vision transformer has achieved impressive performance for many vision tasks.
It may suffer from high redundancy in capturing local features for shallow layers.
Super tokens attempt to provide a semantically meaningful tessellation of visual content.
arXiv Detail & Related papers (2022-11-21T03:48:13Z) - DynamicViT: Efficient Vision Transformers with Dynamic Token
Sparsification [134.9393799043401]
We propose a dynamic token sparsification framework to prune redundant tokens based on the input.
By hierarchically pruning 66% of the input tokens, our method greatly reduces 31%37% FLOPs and improves the throughput by over 40%.
DynamicViT models can achieve very competitive complexity/accuracy trade-offs compared to state-of-the-art CNNs and vision transformers on ImageNet.
arXiv Detail & Related papers (2021-06-03T17:57:41Z) - Tokens-to-Token ViT: Training Vision Transformers from Scratch on
ImageNet [128.96032932640364]
We propose a new Tokens-To-Token Vision Transformers (T2T-ViT) to solve vision tasks.
T2T-ViT reduces the parameter counts and MACs of vanilla ViT by 200%, while achieving more than 2.5% improvement when trained from scratch on ImageNet.
For example, T2T-ViT with ResNet50 comparable size can achieve 80.7% top-1 accuracy on ImageNet.
arXiv Detail & Related papers (2021-01-28T13:25:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.