Zero-shot Commonsense Reasoning over Machine Imagination
- URL: http://arxiv.org/abs/2410.09329v1
- Date: Sat, 12 Oct 2024 02:15:11 GMT
- Title: Zero-shot Commonsense Reasoning over Machine Imagination
- Authors: Hyuntae Park, Yeachan Kim, Jun-Hyung Park, SangKeun Lee,
- Abstract summary: We propose Imagine, a novel zero-shot commonsense reasoning framework designed to complement textual inputs with visual signals derived from machine-generated images.
We show that Imagine outperforms existing methods by a large margin, highlighting the strength of machine imagination in mitigating reporting bias and enhancing generalization capabilities.
- Score: 14.350718566829343
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent approaches to zero-shot commonsense reasoning have enabled Pre-trained Language Models (PLMs) to learn a broad range of commonsense knowledge without being tailored to specific situations. However, they often suffer from human reporting bias inherent in textual commonsense knowledge, leading to discrepancies in understanding between PLMs and humans. In this work, we aim to bridge this gap by introducing an additional information channel to PLMs. We propose Imagine (Machine Imagination-based Reasoning), a novel zero-shot commonsense reasoning framework designed to complement textual inputs with visual signals derived from machine-generated images. To achieve this, we enhance PLMs with imagination capabilities by incorporating an image generator into the reasoning process. To guide PLMs in effectively leveraging machine imagination, we create a synthetic pre-training dataset that simulates visual question-answering. Our extensive experiments on diverse reasoning benchmarks and analysis show that Imagine outperforms existing methods by a large margin, highlighting the strength of machine imagination in mitigating reporting bias and enhancing generalization capabilities.
Related papers
- Learning to Ground VLMs without Forgetting [54.033346088090674]
We introduce LynX, a framework that equips pretrained Visual Language Models with visual grounding ability without forgetting their existing image and language understanding skills.
To train the model effectively, we generate a high-quality synthetic dataset we call SCouT, which mimics human reasoning in visual grounding.
We evaluate LynX on several object detection and visual grounding datasets, demonstrating strong performance in object detection, zero-shot localization and grounded reasoning.
arXiv Detail & Related papers (2024-10-14T13:35:47Z) - SOK-Bench: A Situated Video Reasoning Benchmark with Aligned Open-World Knowledge [60.76719375410635]
We propose a new benchmark (SOK-Bench) consisting of 44K questions and 10K situations with instance-level annotations depicted in the videos.
The reasoning process is required to understand and apply situated knowledge and general knowledge for problem-solving.
We generate associated question-answer pairs and reasoning processes, finally followed by manual reviews for quality assurance.
arXiv Detail & Related papers (2024-05-15T21:55:31Z) - What if...?: Thinking Counterfactual Keywords Helps to Mitigate Hallucination in Large Multi-modal Models [50.97705264224828]
We propose Counterfactual Inception, a novel method that implants counterfactual thinking into Large Multi-modal Models.
We aim for the models to engage with and generate responses that span a wider contextual scene understanding.
Comprehensive analyses across various LMMs, including both open-source and proprietary models, corroborate that counterfactual thinking significantly reduces hallucination.
arXiv Detail & Related papers (2024-03-20T11:27:20Z) - MOKA: Open-World Robotic Manipulation through Mark-Based Visual Prompting [97.52388851329667]
We introduce Marking Open-world Keypoint Affordances (MOKA) to solve robotic manipulation tasks specified by free-form language instructions.
Central to our approach is a compact point-based representation of affordance, which bridges the VLM's predictions on observed images and the robot's actions in the physical world.
We evaluate and analyze MOKA's performance on various table-top manipulation tasks including tool use, deformable body manipulation, and object rearrangement.
arXiv Detail & Related papers (2024-03-05T18:08:45Z) - In-Context Analogical Reasoning with Pre-Trained Language Models [10.344428417489237]
We explore the use of intuitive language-based abstractions to support analogy in AI systems.
Specifically, we apply large pre-trained language models (PLMs) to visual Raven's Progressive Matrices ( RPM)
We find that PLMs exhibit a striking capacity for zero-shot relational reasoning, exceeding human performance and nearing supervised vision-based methods.
arXiv Detail & Related papers (2023-05-28T04:22:26Z) - See, Think, Confirm: Interactive Prompting Between Vision and Language
Models for Knowledge-based Visual Reasoning [60.43585179885355]
We propose a novel framework named Interactive Prompting Visual Reasoner (IPVR) for few-shot knowledge-based visual reasoning.
IPVR contains three stages, see, think and confirm.
We conduct experiments on a range of knowledge-based visual reasoning datasets.
arXiv Detail & Related papers (2023-01-12T18:59:50Z) - ImaginE: An Imagination-Based Automatic Evaluation Metric for Natural
Language Generation [53.56628907030751]
We propose ImaginE, an imagination-based automatic evaluation metric for natural language generation.
With the help of CLIP and DALL-E, two cross-modal models pre-trained on large-scale image-text pairs, we automatically generate an image as the embodied imagination for the text snippet.
Experiments spanning several text generation tasks demonstrate that adding imagination with our ImaginE displays great potential in introducing multi-modal information into NLG evaluation.
arXiv Detail & Related papers (2021-06-10T17:59:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.