論文の概要: LogLM: From Task-based to Instruction-based Automated Log Analysis
- arxiv url: http://arxiv.org/abs/2410.09352v1
- Date: Sat, 12 Oct 2024 03:36:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:53:51.675330
- Title: LogLM: From Task-based to Instruction-based Automated Log Analysis
- Title(参考訳): LogLM:タスクベースからインストラクションベースの自動ログ分析
- Authors: Yilun Liu, Yuhe Ji, Shimin Tao, Minggui He, Weibin Meng, Shenglin Zhang, Yongqian Sun, Yuming Xie, Boxing Chen, Hao Yang,
- Abstract要約: 既存のアプローチでは、ログ分析を独立したタスクを実行するためのモデルトレーニングとして扱うことが多い。
本稿では,対数ラベル対を命令応答対の統一形式に変換する命令ベーストレーニング手法を提案する。
トレーニングされたモデルであるLogLMは、複雑なユーザ命令に従って、さまざまなタスクをまたいでより一般化することができます。
- 参考スコア(独自算出の注目度): 22.44842963552044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatic log analysis is essential for the efficient Operation and Maintenance (O&M) of software systems, providing critical insights into system behaviors. However, existing approaches mostly treat log analysis as training a model to perform an isolated task, using task-specific log-label pairs. These task-based approaches are inflexible in generalizing to complex scenarios, depend on task-specific training data, and cost significantly when deploying multiple models. In this paper, we propose an instruction-based training approach that transforms log-label pairs from multiple tasks and domains into a unified format of instruction-response pairs. Our trained model, LogLM, can follow complex user instructions and generalize better across different tasks, thereby increasing flexibility and reducing the dependence on task-specific training data. By integrating major log analysis tasks into a single model, our approach also relieves model deployment burden. Experimentally, LogLM outperforms existing approaches across five log analysis capabilities, and exhibits strong generalization abilities on complex instructions and unseen tasks.
- Abstract(参考訳): 自動ログ分析は、ソフトウェアシステムの効率的な運用と保守(O&M)に不可欠であり、システムの振る舞いに関する重要な洞察を提供する。
しかし、既存のアプローチは主に、タスク固有のログラベルペアを使用して、独立したタスクを実行するためのモデルをトレーニングするものとしてログ分析を扱います。
これらのタスクベースのアプローチは、複雑なシナリオを一般化するには柔軟性がなく、タスク固有のトレーニングデータに依存する。
本稿では,ログラベルペアを複数のタスクやドメインから命令応答ペアの統一形式に変換する,命令ベースのトレーニング手法を提案する。
トレーニングされたモデルであるLogLMは、複雑なユーザ命令に従って、さまざまなタスクをまたいだより優れた一般化が可能になり、柔軟性が向上し、タスク固有のトレーニングデータへの依存が軽減される。
主要なログ分析タスクをひとつのモデルに統合することで、当社のアプローチはモデルデプロイメントの負担を軽減します。
実験的に、LogLMは5つのログ解析能力で既存のアプローチより優れており、複雑な命令や目に見えないタスクに対して強力な一般化能力を示している。
関連論文リスト
- LogEval: A Comprehensive Benchmark Suite for Large Language Models In Log Analysis [32.46940506638522]
ログ解析タスクにおける大規模言語モデルの性能を評価するために設計されたベンチマークスイートであるLogEvalを紹介する。
このベンチマークでは、ログ解析、ログ異常検出、ログ障害診断、ログ要約などのタスクをカバーしている。
LogEvalは4000の公開ログデータエントリを使用して各タスクを評価し、各タスクに対して15の異なるプロンプトを使用して、徹底的で公正な評価を保証する。
論文 参考訳(メタデータ) (2024-07-02T02:39:33Z) - LogFormer: A Pre-train and Tuning Pipeline for Log Anomaly Detection [73.69399219776315]
本稿では,ログ異常検出(LogFormer)のためのTransformerベースの統合フレームワークを提案する。
具体的には、ログデータの共有セマンティック知識を得るために、まず、ソースドメイン上で事前学習を行う。
そして、そのような知識を共有パラメータを介して対象領域に転送する。
論文 参考訳(メタデータ) (2024-01-09T12:55:21Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
タスク自動化における大規模言語モデル(LLM)の機能を評価するためのフレームワークであるTaskBenchを紹介する。
具体的には、タスクの分解、ツールの選択、パラメータ予測を評価する。
提案手法は, 自動構築と厳密な人的検証を組み合わせることで, 人的評価との整合性を確保する。
論文 参考訳(メタデータ) (2023-11-30T18:02:44Z) - Learning Representations on Logs for AIOps [6.47086647390439]
大規模言語モデル(LLM)は、膨大な量のラベルのないデータに基づいて自己監督を用いて訓練される。
本稿では,パブリックおよびプロプライエタリなログデータに基づいてトレーニングされたログデータのためのLLMを提案する。
提案するLLMは,公開およびプロプライエタリなログデータに基づいてトレーニングされ,複数のダウンストリームタスクにおいて優れたパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-08-18T20:34:46Z) - On the Effectiveness of Log Representation for Log-based Anomaly Detection [12.980238412281471]
本研究は,従来のログ解析研究から広く採用されているログ表現技術について検討し,比較する。
6つのログ表現手法を選択し、7つのMLモデルと4つの公開ログデータセットで評価する。
また、ログ表現技術を採用する際に、ログ解析プロセスと異なる特徴集約アプローチの影響についても検討する。
論文 参考訳(メタデータ) (2023-08-17T02:18:59Z) - Meta-training with Demonstration Retrieval for Efficient Few-shot
Learning [11.723856248352007]
大規模な言語モデルは、数ショットのNLPタスクで印象的な結果を示す。
これらのモデルはメモリと計算集約である。
本稿では,実演検索によるメタトレーニングを提案する。
論文 参考訳(メタデータ) (2023-06-30T20:16:22Z) - Efficient Prompting via Dynamic In-Context Learning [76.83516913735072]
ブラックボックスジェネリストモデルを用いた効率的なプロンプト法であるDynaICLを提案する。
DynaICLは入力複雑性と計算予算に応じてコンテキスト内の例を動的に割り当てる。
DynaICLは、各入力に同じテキスト内サンプルを割り当てる一般的な慣行と比較して、最大46%のトークン予算を節約している。
論文 参考訳(メタデータ) (2023-05-18T17:58:31Z) - RADDLE: An Evaluation Benchmark and Analysis Platform for Robust
Task-oriented Dialog Systems [75.87418236410296]
我々はraddleベンチマーク、コーパスのコレクション、および様々なドメインのモデルのパフォーマンスを評価するためのツールを紹介します。
RADDLEは強力な一般化能力を持つモデルを好んで奨励するように設計されている。
先行学習と微調整に基づく最近の最先端システムの評価を行い,異種ダイアログコーパスに基づく基礎的な事前学習が,ドメインごとの個別モデルをトレーニングするよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-12-29T08:58:49Z) - Self-Supervised Log Parsing [59.04636530383049]
大規模ソフトウェアシステムは、大量の半構造化ログレコードを生成する。
既存のアプローチは、ログ特化や手動ルール抽出に依存している。
本稿では,自己教師付き学習モデルを用いて解析タスクをマスク言語モデリングとして定式化するNuLogを提案する。
論文 参考訳(メタデータ) (2020-03-17T19:25:25Z) - Evaluating Logical Generalization in Graph Neural Networks [59.70452462833374]
グラフニューラルネットワーク(GNN)を用いた論理一般化の課題について検討する。
ベンチマークスイートであるGraphLogでは、学習アルゴリズムが異なる合成論理でルール誘導を実行する必要がある。
モデルが一般化し適応する能力は、トレーニング中に遭遇する論理規則の多様性によって強く決定される。
論文 参考訳(メタデータ) (2020-03-14T05:45:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。