論文の概要: Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework
- arxiv url: http://arxiv.org/abs/2410.09356v1
- Date: Sat, 12 Oct 2024 03:47:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:53:51.661112
- Title: Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework
- Title(参考訳): Fusion Matrix Promptによる自己注意型時空間対話型トラフィック予測フレームワーク
- Authors: Mu Liu, MingChen Sun YingJi Li, Ying Wang,
- Abstract要約: FMPESTF(Fusion Matrix Prompt-Enhanced Self-Attention Space-Temporal Interactive Traffic Forecasting Framework)を提案する。
FMPESTFは、ダウンサンプリングトラフィックデータのための空間的および時間的モジュールで構成されている。
時間モデリングにおける注意機構を導入し,様々な交通シナリオに適応するための階層型時空間対話型学習を設計する。
- 参考スコア(独自算出の注目度): 2.9490249935740573
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, spatial-temporal forecasting technology has been rapidly developed due to the increasing demand for traffic management and travel planning. However, existing traffic forecasting models still face the following limitations. On one hand, most previous studies either focus too much on real-world geographic information, neglecting the potential traffic correlation between different regions, or overlook geographical position and only model the traffic flow relationship. On the other hand, the importance of different time slices is ignored in time modeling. Therefore, we propose a Fusion Matrix Prompt Enhanced Self-Attention Spatial-Temporal Interactive Traffic Forecasting Framework (FMPESTF), which is composed of spatial and temporal modules for down-sampling traffic data. The network is designed to establish a traffic fusion matrix considering spatial-temporal heterogeneity as a query to reconstruct a data-driven dynamic traffic data structure, which accurately reveal the flow relationship of nodes in the traffic network. In addition, we introduce attention mechanism in time modeling, and design hierarchical spatial-temporal interactive learning to help the model adapt to various traffic scenarios. Through extensive experimental on six real-world traffic datasets, our method is significantly superior to other baseline models, demonstrating its efficiency and accuracy in dealing with traffic forecasting problems.
- Abstract(参考訳): 近年,交通管理や旅行計画の需要が高まり,時空間予測技術が急速に発展している。
しかし、既存の交通予測モデルは以下の制限に直面している。
一方、これまでのほとんどの研究は、現実世界の地理的情報に重きを置きすぎ、異なる地域間の潜在的な交通相関を無視したり、地理的な位置を見落とし、交通フローの関係をモデル化したりしている。
一方、時間モデリングにおいて異なる時間スライスの重要性は無視される。
そこで本稿では,FMPESTF(Fusion Matrix Prompt Enhanced Self-Attention Space-Temporal Interactive Traffic Forecasting Framework)を提案する。
このネットワークは、空間的時間的不均一性を考慮し、データ駆動動的トラフィックデータ構造を再構築するクエリとしてトラフィック融合行列を確立し、トラフィックネットワーク内のノードのフロー関係を正確に明らかにするように設計されている。
さらに、時間モデリングにおける注意機構を導入し、様々な交通シナリオに適応するための階層型時空間対話型学習を設計する。
実世界の6つの交通データセットの広範な実験を通して,本手法は他のベースラインモデルよりもはるかに優れており,交通予測問題に対処する際の効率と正確性を示している。
関連論文リスト
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
本稿ではSGCN-LSTM(Signal-Enhanced Graph Convolutional Network Long Short Term Memory)モデルを提案する。
PEMS-BAYロードネットワークトラフィックデータセットの実験は、SGCN-LSTMモデルの有効性を示す。
論文 参考訳(メタデータ) (2024-11-01T00:37:00Z) - Adaptive Hierarchical SpatioTemporal Network for Traffic Forecasting [70.66710698485745]
本稿では,AHSTN(Adaptive Hierarchical SpatioTemporal Network)を提案する。
AHSTNは空間階層を利用し、マルチスケール空間相関をモデル化する。
2つの実世界のデータセットの実験により、AHSTNはいくつかの強いベースラインよりも優れたパフォーマンスを達成することが示された。
論文 参考訳(メタデータ) (2023-06-15T14:50:27Z) - PDFormer: Propagation Delay-Aware Dynamic Long-Range Transformer for
Traffic Flow Prediction [78.05103666987655]
空間時空間グラフニューラルネットワーク(GNN)モデルは、この問題を解決する最も有望な方法の1つである。
本稿では,交通流の正確な予測を行うために,遅延を意識した動的長距離トランスフォーマー(PDFormer)を提案する。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2023-01-19T08:42:40Z) - STLGRU: Spatio-Temporal Lightweight Graph GRU for Traffic Flow
Prediction [0.40964539027092917]
本稿では,交通流を正確に予測する新しい交通予測モデルSTLGRUを提案する。
提案するSTLGRUは,交通ネットワークの局所的・大域的空間的関係を効果的に捉えることができる。
提案手法は,最先端の性能を達成するだけでなく,計算効率の競争力も発揮できる。
論文 参考訳(メタデータ) (2022-12-08T20:24:59Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
建設工事の影響下での交通速度予測モデルを提案する。
このモデルは、強力なアテンションベースの時間グラフ畳み込みアーキテクチャに基づいているが、様々なチャネルを利用して異なる情報ソースを統合する。
このモデルは、2つのベンチマークデータセットと、北バージニアの散らかった道路の角で収集した新しいデータセットで評価されている。
論文 参考訳(メタデータ) (2021-10-04T16:07:37Z) - DynSTGAT: Dynamic Spatial-Temporal Graph Attention Network for Traffic
Signal Control [19.0913165219654]
適応的な交通信号制御は、スマートシティの構築において重要な役割を果たす。
本研究では、動的履歴状態を新しい時空間グラフアテンションネットワークに統合するDynSTGATという新しいニューラルネットワークフレームワークを提案する。
本手法は,最先端の手法に対して,旅行時間とスループットにおいて優れた性能を実現することができる。
論文 参考訳(メタデータ) (2021-09-12T11:27:27Z) - Learning dynamic and hierarchical traffic spatiotemporal features with
Transformer [4.506591024152763]
本稿では,空間時間グラフモデリングと長期交通予測のための新しいモデルであるTraffic Transformerを提案する。
Transformerは自然言語処理(NLP)で最も人気のあるフレームワークです。
注目重量行列を解析すれば 道路網の 影響力のある部分を見つけられる 交通網をよりよく学べる
論文 参考訳(メタデータ) (2021-04-12T02:29:58Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
交通信号の制御は、都市部の交通渋滞の緩和に必要不可欠である。
問題モデリングの複雑さが高いため、現在の作業の実験的な設定はしばしば矛盾する。
エンコーダ・デコーダ構造を用いた深層強化学習に基づく新規で強力なベースラインモデルを提案する。
論文 参考訳(メタデータ) (2021-01-24T03:55:39Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
交通予測のための地理・長期時間グラフ畳み込み型ニューラルネットワーク(GLT-GCRNN)を提案する。
本研究では,地理的・長期的時間的パターンを共有する道路間のリッチな相互作用を学習する交通予測のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-04-23T03:50:46Z) - Spatial-Temporal Transformer Networks for Traffic Flow Forecasting [74.76852538940746]
本稿では,長期交通予測の精度を向上させるため,時空間変圧器ネットワーク(STTN)の新たなパラダイムを提案する。
具体的には、有向空間依存を動的にモデル化することにより、空間変換器と呼ばれる新しいグラフニューラルネットワークを提案する。
提案モデルにより,長期間にわたる空間的依存関係に対する高速かつスケーラブルなトレーニングが可能になる。
論文 参考訳(メタデータ) (2020-01-09T10:21:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。