論文の概要: Text Classification using Graph Convolutional Networks: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2410.09399v1
- Date: Sat, 12 Oct 2024 07:03:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 14:34:09.554085
- Title: Text Classification using Graph Convolutional Networks: A Comprehensive Survey
- Title(参考訳): グラフ畳み込みネットワークを用いたテキスト分類:包括的調査
- Authors: Syed Mustafa Haider Rizvi, Ramsha Imran, Arif Mahmood,
- Abstract要約: グラフ畳み込みネットワーク(GCN)ベースのアプローチは、この10年間、この分野で大きな注目を集めてきた。
本研究の目的は,GCNをベースとしたテキスト分類手法をアーキテクチャや監視方法に関して要約し,分類することである。
- 参考スコア(独自算出の注目度): 11.1080224302799
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Text classification is a quintessential and practical problem in natural language processing with applications in diverse domains such as sentiment analysis, fake news detection, medical diagnosis, and document classification. A sizable body of recent works exists where researchers have studied and tackled text classification from different angles with varying degrees of success. Graph convolution network (GCN)-based approaches have gained a lot of traction in this domain over the last decade with many implementations achieving state-of-the-art performance in more recent literature and thus, warranting the need for an updated survey. This work aims to summarize and categorize various GCN-based Text Classification approaches with regard to the architecture and mode of supervision. It identifies their strengths and limitations and compares their performance on various benchmark datasets. We also discuss future research directions and the challenges that exist in this domain.
- Abstract(参考訳): テキスト分類は、感情分析、偽ニュースの検出、医学的診断、文書分類など、さまざまな分野に応用された自然言語処理における重要な、実践的な問題である。
研究者は様々な角度からテキスト分類を研究・取り組んだが、成功の度合いは様々である。
グラフ畳み込みネットワーク(GCN)ベースのアプローチは、最近の文献で最先端のパフォーマンスを達成する多くの実装によって、この領域で過去10年間で大きな注目を集めており、最新の調査の必要性を保証している。
本研究の目的は,GCNをベースとしたテキスト分類手法をアーキテクチャや監視方法に関して要約し,分類することである。
強度と制限を識別し、さまざまなベンチマークデータセットのパフォーマンスを比較する。
また,本領域における今後の研究の方向性と課題についても論じる。
関連論文リスト
- Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Recent Advances in Hierarchical Multi-label Text Classification: A
Survey [11.709847202580505]
階層的マルチラベルテキスト分類は、入力されたテキストを複数のラベルに分類することを目的としており、その中にラベルが構造化され階層的である。
これは、科学文献のアーカイブなど、多くの現実世界の応用において重要なタスクである。
論文 参考訳(メタデータ) (2023-07-30T16:13:00Z) - Graph Neural Networks for Text Classification: A Survey [8.414181339242706]
グラフニューラルネットワークベースのモデルは、複雑な構造化テキストデータに対処し、グローバル情報を利用することができる。
コーパスレベルと文書レベルのグラフニューラルネットワークを含む、メソッドのカバレッジを2023年までに提供します。
技術調査に加えて,グラフニューラルネットワークを用いたテキスト分類における課題と今後の方向性についても検討する。
論文 参考訳(メタデータ) (2023-04-23T04:21:50Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
グラフニューラルネットワーク(GNN)は、研究コミュニティで注目され、この標準タスクで有望な結果を実証している。
成功にもかかわらず、それらのパフォーマンスは、単語間の高次相互作用をキャプチャできないため、実際は大部分が危険に晒される可能性がある。
本稿では,テキスト表現学習において,少ない計算量でより表現力の高いハイパーグラフアテンションネットワーク(HyperGAT)を提案する。
論文 参考訳(メタデータ) (2020-11-01T00:21:59Z) - Legal Document Classification: An Application to Law Area Prediction of
Petitions to Public Prosecution Service [6.696983725360808]
本稿では,NLPを用いたテキスト分類手法を提案する。
我々の主な目標は、各分野の法律に請願書を割り当てるプロセスを自動化することです。
最高の結果は、ドメイン固有のコーパスとリカレントニューラルネットワークアーキテクチャに基づいてトレーニングされたWord2Vecの組み合わせで得られる。
論文 参考訳(メタデータ) (2020-10-13T18:05:37Z) - Rank over Class: The Untapped Potential of Ranking in Natural Language
Processing [8.637110868126546]
我々は、現在分類を用いて対処されている多くのタスクが、実際には分類モールドに切り替わっていると論じる。
本稿では,一対のテキストシーケンスの表現を生成するトランスフォーマーネットワークからなる新しいエンドツーエンドランキング手法を提案する。
重く歪んだ感情分析データセットの実験では、ランキング結果を分類ラベルに変換すると、最先端のテキスト分類よりも約22%改善する。
論文 参考訳(メタデータ) (2020-09-10T22:18:57Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
我々は,クロスドメイン全体的特徴共適応のための新しい逆グラフ表現適応(AGRA)フレームワークを開発した。
我々は,いくつかの一般的なベンチマークで広範囲かつ公平な評価を行い,提案したAGRAフレームワークが従来の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-03T15:00:31Z) - A Survey on Text Classification: From Shallow to Deep Learning [83.47804123133719]
過去10年は、ディープラーニングが前例のない成功を収めたために、この分野の研究が急増している。
本稿では,1961年から2021年までの最先端のアプローチを見直し,そのギャップを埋める。
特徴抽出と分類に使用されるテキストとモデルに基づいて,テキスト分類のための分類を作成する。
論文 参考訳(メタデータ) (2020-08-02T00:09:03Z) - Text Recognition in Real Scenarios with a Few Labeled Samples [55.07859517380136]
Scene Text Recognition (STR) はコンピュータビジョン分野におけるホットな研究テーマである。
本稿では,数ショットの逆数列領域適応 (FASDA) を用いて構築シーケンスを適応する手法を提案する。
我々のアプローチは、ソースドメインとターゲットドメインの間の文字レベルの混乱を最大化することができる。
論文 参考訳(メタデータ) (2020-06-22T13:03:01Z) - Deep Learning Based Text Classification: A Comprehensive Review [75.8403533775179]
本稿では,近年開発されたテキスト分類のための150以上のディープラーニングモデルについてレビューする。
また、テキスト分類に広く使われている40以上の一般的なデータセットの要約も提供する。
論文 参考訳(メタデータ) (2020-04-06T02:00:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。