Distribution-aware Noisy-label Crack Segmentation
- URL: http://arxiv.org/abs/2410.09409v1
- Date: Sat, 12 Oct 2024 07:29:47 GMT
- Title: Distribution-aware Noisy-label Crack Segmentation
- Authors: Xiaoyan Jiang, Xinlong Wan, Kaiying Zhu, Xihe Qiu, Zhijun Fang,
- Abstract summary: We introduce the SAM-Adapter, which incorporates the general knowledge of the Segment Anything Model (SAM) into crack segmentation.
The effectiveness of the SAM-Adapter is constrained by noisy labels within small-scale training sets, including omissions and mislabeling of cracks.
We present an innovative joint learning framework that utilizes distribution-aware domain-specific semantic knowledge to guide the discriminative learning process of the SAM-Adapter.
- Score: 4.224255134206838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Road crack segmentation is critical for robotic systems tasked with the inspection, maintenance, and monitoring of road infrastructures. Existing deep learning-based methods for crack segmentation are typically trained on specific datasets, which can lead to significant performance degradation when applied to unseen real-world scenarios. To address this, we introduce the SAM-Adapter, which incorporates the general knowledge of the Segment Anything Model (SAM) into crack segmentation, demonstrating enhanced performance and generalization capabilities. However, the effectiveness of the SAM-Adapter is constrained by noisy labels within small-scale training sets, including omissions and mislabeling of cracks. In this paper, we present an innovative joint learning framework that utilizes distribution-aware domain-specific semantic knowledge to guide the discriminative learning process of the SAM-Adapter. To our knowledge, this is the first approach that effectively minimizes the adverse effects of noisy labels on the supervised learning of the SAM-Adapter. Our experimental results on two public pavement crack segmentation datasets confirm that our method significantly outperforms existing state-of-the-art techniques. Furthermore, evaluations on the completely unseen CFD dataset demonstrate the high cross-domain generalization capability of our model, underscoring its potential for practical applications in crack segmentation.
Related papers
- Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance (UOIS) is crucial for autonomous robots operating in unstructured environments.
We propose UOIS-SAM, a data-efficient solution for the UOIS task.
UOIS-SAM integrates two key components: (i) a Heatmap-based Prompt Generator (HPG) to generate class-agnostic point prompts with precise foreground prediction, and (ii) a Hierarchical Discrimination Network (HDNet) that adapts SAM's mask decoder.
arXiv Detail & Related papers (2024-09-23T19:05:50Z) - Unsupervised Continual Anomaly Detection with Contrastively-learned
Prompt [80.43623986759691]
We introduce a novel Unsupervised Continual Anomaly Detection framework called UCAD.
The framework equips the UAD with continual learning capability through contrastively-learned prompts.
We conduct comprehensive experiments and set the benchmark on unsupervised continual anomaly detection and segmentation.
arXiv Detail & Related papers (2024-01-02T03:37:11Z) - Test-Time Training for Semantic Segmentation with Output Contrastive
Loss [12.535720010867538]
Deep learning-based segmentation models have achieved impressive performance on public benchmarks, but generalizing well to unseen environments remains a major challenge.
This paper introduces Contrastive Loss (OCL), known for its capability to learn robust and generalized representations, to stabilize the adaptation process.
Our method excels even when applied to models initially pre-trained using domain adaptation methods on test domain data, showcasing its resilience and adaptability.
arXiv Detail & Related papers (2023-11-14T03:13:47Z) - From Classification to Segmentation with Explainable AI: A Study on Crack Detection and Growth Monitoring [8.57765854420254]
Monitoring surface cracks in infrastructure is crucial for structural health monitoring.
Machine learning approaches have proven their effectiveness but typically require large annotated datasets for supervised training.
To mitigate this cost, one can leverage explainable artificial intelligence (XAI) to derive segmentations from the explanations of a classifier, requiring only weak image-level supervision.
arXiv Detail & Related papers (2023-09-20T12:50:52Z) - Learning to Generate Training Datasets for Robust Semantic Segmentation [37.9308918593436]
We propose a novel approach to improve the robustness of semantic segmentation techniques.
We design Robusta, a novel conditional generative adversarial network to generate realistic and plausible perturbed images.
Our results suggest that this approach could be valuable in safety-critical applications.
arXiv Detail & Related papers (2023-08-01T10:02:26Z) - Infrastructure Crack Segmentation: Boundary Guidance Method and
Benchmark Dataset [11.282003429161163]
This paper examines the inherent characteristics of cracks so as to introduce boundary features into crack identification.
It builds a boundary guidance crack segmentation model (BGCrack) with targeted structures and modules, including a high frequency module.
This paper provides a steel crack dataset that establishes a unified and fair benchmark for the identification of steel cracks.
arXiv Detail & Related papers (2023-06-15T15:25:53Z) - ASR: Attention-alike Structural Re-parameterization [53.019657810468026]
We propose a simple-yet-effective attention-alike structural re- parameterization (ASR) that allows us to achieve SRP for a given network while enjoying the effectiveness of the attention mechanism.
In this paper, we conduct extensive experiments from a statistical perspective and discover an interesting phenomenon Stripe Observation, which reveals that channel attention values quickly approach some constant vectors during training.
arXiv Detail & Related papers (2023-04-13T08:52:34Z) - Self-adversarial Multi-scale Contrastive Learning for Semantic
Segmentation of Thermal Facial Images [11.68189195596647]
We propose Self-Adrial Multi-scale Contrastive Learning (SAM-CL) as a generic learning framework to train segmentation networks.
SAM-CL framework constitutes SAM-CL loss function and a thermal image augmentation (TiAug) as a domain-specific augmentation technique to simulate unconstrained settings.
arXiv Detail & Related papers (2022-09-21T22:58:47Z) - Disentangled Representation Learning for RF Fingerprint Extraction under
Unknown Channel Statistics [77.13542705329328]
We propose a framework of disentangled representation learning(DRL) that first learns to factor the input signals into a device-relevant component and a device-irrelevant component via adversarial learning.
The implicit data augmentation in the proposed framework imposes a regularization on the RFF extractor to avoid the possible overfitting of device-irrelevant channel statistics.
Experiments validate that the proposed approach, referred to as DR-RFF, outperforms conventional methods in terms of generalizability to unknown complicated propagation environments.
arXiv Detail & Related papers (2022-08-04T15:46:48Z) - Triggering Failures: Out-Of-Distribution detection by learning from
local adversarial attacks in Semantic Segmentation [76.2621758731288]
We tackle the detection of out-of-distribution (OOD) objects in semantic segmentation.
Our main contribution is a new OOD detection architecture called ObsNet associated with a dedicated training scheme based on Local Adversarial Attacks (LAA)
We show it obtains top performances both in speed and accuracy when compared to ten recent methods of the literature on three different datasets.
arXiv Detail & Related papers (2021-08-03T17:09:56Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.