VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment
- URL: http://arxiv.org/abs/2410.09421v2
- Date: Fri, 18 Oct 2024 07:10:38 GMT
- Title: VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment
- Authors: Lei Li, Zhihui Xie, Mukai Li, Shunian Chen, Peiyi Wang, Liang Chen, Yazheng Yang, Benyou Wang, Lingpeng Kong, Qi Liu,
- Abstract summary: We investigate the efficacy of AI feedback to scale supervision for aligning vision-language models.
We introduce VLFeedback, the first large-scale vision-language feedback dataset.
We train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback.
- Score: 55.7956150385255
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As large vision-language models (LVLMs) evolve rapidly, the demand for high-quality and diverse data to align these models becomes increasingly crucial. However, the creation of such data with human supervision proves costly and time-intensive. In this paper, we investigate the efficacy of AI feedback to scale supervision for aligning LVLMs. We introduce VLFeedback, the first large-scale vision-language feedback dataset, comprising over 82K multi-modal instructions and comprehensive rationales generated by off-the-shelf models without human annotations. To evaluate the effectiveness of AI feedback for vision-language alignment, we train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback. Silkie showcases exceptional performance regarding helpfulness, visual faithfulness, and safety metrics. It outperforms its base model by 6.9\% and 9.5\% in perception and cognition tasks, reduces hallucination issues on MMHal-Bench, and exhibits enhanced resilience against red-teaming attacks. Furthermore, our analysis underscores the advantage of AI feedback, particularly in fostering preference diversity to deliver more comprehensive improvements. Our dataset, training code and models are available at https://vlf-silkie.github.io.
Related papers
- Learning to Summarize from LLM-generated Feedback [19.227353364365715]
This work explores using LLM-generated feedback to improve summary quality by aligning the summaries with human preferences for faithfulness, completeness, and conciseness.
Our experiments show how feedback quality, dimensionality, and granularity influence preference learning.
We introduce SummLlama3-8b, a model that outperforms the nearly 10x larger Llama3-70b-instruct in generating human-preferred summaries.
arXiv Detail & Related papers (2024-10-17T01:01:09Z) - Enhancing Large Vision Language Models with Self-Training on Image Comprehension [99.9389737339175]
We introduce Self-Training on Image (STIC), which emphasizes a self-training approach specifically for image comprehension.
First, the model self-constructs a preference for image descriptions using unlabeled images.
To further self-improve reasoning on the extracted visual information, we let the model reuse a small portion of existing instruction-tuning data.
arXiv Detail & Related papers (2024-05-30T05:53:49Z) - Enhancing Visual-Language Modality Alignment in Large Vision Language Models via Self-Improvement [102.22911097049953]
SIMA is a framework that enhances visual and language modality alignment through self-improvement.
It employs an in-context self-critic mechanism to select response pairs for preference tuning.
We demonstrate that SIMA achieves superior modality alignment, outperforming previous approaches.
arXiv Detail & Related papers (2024-05-24T23:09:27Z) - Calibrated Self-Rewarding Vision Language Models [27.686545023186852]
Large Vision-Language Models (LVLMs) have made substantial progress by integrating pre-trained large language models (LLMs) and vision models through instruction tuning.
LVLMs often exhibit the hallucination phenomenon, where generated text responses appear linguistically plausible but contradict the input image.
We propose the Calibrated Self-Rewarding (CSR) approach, which enables the model to self-improve by iteratively generating candidate responses, evaluating the reward for each response, and curating preference data for fine-tuning.
arXiv Detail & Related papers (2024-05-23T14:30:33Z) - Aligning Modalities in Vision Large Language Models via Preference
Fine-tuning [67.62925151837675]
In this work, we frame the hallucination problem as an alignment issue, tackle it with preference tuning.
Specifically, we propose POVID to generate feedback data with AI models.
We use ground-truth instructions as the preferred response and a two-stage approach to generate dispreferred data.
In experiments across broad benchmarks, we show that we can not only reduce hallucinations, but improve model performance across standard benchmarks, outperforming prior approaches.
arXiv Detail & Related papers (2024-02-18T00:56:16Z) - Silkie: Preference Distillation for Large Visual Language Models [56.10697821410489]
This paper explores preference distillation for large vision language models (LVLMs)
We first build a vision-language feedback dataset utilizing AI annotation.
We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations.
The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities.
arXiv Detail & Related papers (2023-12-17T09:44:27Z) - UltraFeedback: Boosting Language Models with Scaled AI Feedback [99.4633351133207]
We present textscUltraFeedback, a large-scale, high-quality, and diversified AI feedback dataset.
Our work validates the effectiveness of scaled AI feedback data in constructing strong open-source chat language models.
arXiv Detail & Related papers (2023-10-02T17:40:01Z) - ILLUME: Rationalizing Vision-Language Models through Human Interactions [18.701950647429]
We propose a tuning paradigm based on human interactions with machine-generated data.
Our ILLUME executes the following loop: Given an image-question-answer prompt, the VLM samples multiple candidate rationales, and a human critic provides feedback via preference selection.
This loop increases the training data and gradually carves out the VLM's rationalization capabilities that are aligned with human intent.
arXiv Detail & Related papers (2022-08-17T11:41:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.