EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation
- URL: http://arxiv.org/abs/2412.04903v2
- Date: Mon, 16 Dec 2024 13:47:29 GMT
- Title: EACO: Enhancing Alignment in Multimodal LLMs via Critical Observation
- Authors: Yongxin Wang, Meng Cao, Haokun Lin, Mingfei Han, Liang Ma, Jin Jiang, Yuhao Cheng, Xiaodan Liang,
- Abstract summary: We propose Enhancing Alignment in MLLMs via Critical Observation (EACO)
EACO aligns MLLMs by self-generated preference data using only 5k images economically.
EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition.
- Score: 58.546205554954454
- License:
- Abstract: Multimodal large language models (MLLMs) have achieved remarkable progress on various visual question answering and reasoning tasks leveraging instruction fine-tuning specific datasets. They can also learn from preference data annotated by human to enhance their reasoning ability and mitigate hallucinations. Most of preference data is generated from the model itself. However, existing methods require high-quality critical labels, which are costly and rely on human or proprietary models like GPT-4V. In this work, we propose Enhancing Alignment in MLLMs via Critical Observation (EACO), which aligns MLLMs by self-generated preference data using only 5k images economically. Our approach begins with collecting and refining a Scoring Evaluation Instruction-tuning dataset to train a critical evaluation model, termed the Critic. This Critic observes model responses across multiple dimensions, selecting preferred and non-preferred outputs for refined Direct Preference Optimization (DPO) tuning. To further enhance model performance, we employ an additional supervised fine-tuning stage after preference tuning. EACO reduces the overall hallucinations by 65.6% on HallusionBench and improves the reasoning ability by 21.8% on MME-Cognition. EACO achieves an 8.5% improvement over LLaVA-v1.6-Mistral-7B across multiple benchmarks. Remarkably, EACO also shows the potential critical ability in open-source MLLMs, demonstrating that EACO is a viable path to boost the competence of MLLMs.
Related papers
- Dynamic Noise Preference Optimization for LLM Self-Improvement via Synthetic Data [51.62162460809116]
We introduce Dynamic Noise Preference Optimization (DNPO) to ensure consistent improvements across iterations.
In experiments with Zephyr-7B, DNPO consistently outperforms existing methods, showing an average performance boost of 2.6%.
DNPO shows a significant improvement in model-generated data quality, with a 29.4% win-loss rate gap compared to the baseline in GPT-4 evaluations.
arXiv Detail & Related papers (2025-02-08T01:20:09Z) - Star-Agents: Automatic Data Optimization with LLM Agents for Instruction Tuning [71.2981957820888]
We propose a novel Star-Agents framework, which automates the enhancement of data quality across datasets.
The framework initially generates diverse instruction data with multiple LLM agents through a bespoke sampling method.
The generated data undergo a rigorous evaluation using a dual-model method that assesses both difficulty and quality.
arXiv Detail & Related papers (2024-11-21T02:30:53Z) - Training Language Models to Critique With Multi-agent Feedback [102.42751835338233]
MultiCritique pipeline improves critique ability of LLMs by utilizing multi-agent feedback.
pipeline aggregates high-quality critiques from multiple agents instead of a single model.
Our fine-tuned 7B model significantly surpasses other advanced 7B-13B open-source models.
arXiv Detail & Related papers (2024-10-20T04:57:45Z) - VLFeedback: A Large-Scale AI Feedback Dataset for Large Vision-Language Models Alignment [55.7956150385255]
We investigate the efficacy of AI feedback to scale supervision for aligning vision-language models.
We introduce VLFeedback, the first large-scale vision-language feedback dataset.
We train Silkie, an LVLM fine-tuned via direct preference optimization on VLFeedback.
arXiv Detail & Related papers (2024-10-12T07:56:47Z) - Self-Training with Direct Preference Optimization Improves Chain-of-Thought Reasoning [5.487210426671288]
In this work, we demonstrate that the reasoning abilities of small-scale LMs can be enhanced through self-training.
We also show that the conventional self-training can be further augmented by a preference learning algorithm called Direct Preference Optimization.
arXiv Detail & Related papers (2024-07-25T17:59:16Z) - Silkie: Preference Distillation for Large Visual Language Models [56.10697821410489]
This paper explores preference distillation for large vision language models (LVLMs)
We first build a vision-language feedback dataset utilizing AI annotation.
We adopt GPT-4V to assess the generated outputs regarding helpfulness, visual faithfulness, and ethical considerations.
The resulting model Silkie, achieves 6.9% and 9.5% relative improvement on the MME benchmark regarding the perception and cognition capabilities.
arXiv Detail & Related papers (2023-12-17T09:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.