Distilling Invariant Representations with Dual Augmentation
- URL: http://arxiv.org/abs/2410.09474v3
- Date: Fri, 20 Dec 2024 22:10:44 GMT
- Title: Distilling Invariant Representations with Dual Augmentation
- Authors: Nikolaos Giakoumoglou, Tania Stathaki,
- Abstract summary: We introduce a dual augmentation strategy to promote invariant feature learning in both teacher and student models.<n>Our approach leverages different augmentations applied to both models during distillation, pushing the student to capture robust, transferable features.
- Score: 6.24302896438145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge distillation (KD) has been widely used to transfer knowledge from large, accurate models (teachers) to smaller, efficient ones (students). Recent methods have explored enforcing consistency by incorporating causal interpretations to distill invariant representations. In this work, we extend this line of research by introducing a dual augmentation strategy to promote invariant feature learning in both teacher and student models. Our approach leverages different augmentations applied to both models during distillation, pushing the student to capture robust, transferable features. This dual augmentation strategy complements invariant causal distillation by ensuring that the learned representations remain stable across a wider range of data variations and transformations. Extensive experiments on CIFAR-100 demonstrate the effectiveness of this approach, achieving competitive results in same-architecture KD.
Related papers
- DistiLLM-2: A Contrastive Approach Boosts the Distillation of LLMs [58.4911494598431]
DistiLLM-2 is a contrastive approach that simultaneously increases the likelihood of teacher responses and decreases that of student responses.
Our experiments show that DistiLLM-2 not only builds high-performing student models across a wide range of tasks, but also supports diverse applications.
arXiv Detail & Related papers (2025-03-10T08:51:32Z) - SNOOPI: Supercharged One-step Diffusion Distillation with Proper Guidance [12.973835034100428]
This paper presents SNOOPI, a novel framework designed to enhance the guidance in one-step diffusion models during both training and inference.
By varying the guidance scale of both teacher models, we broaden their output distributions, resulting in a more robust VSD loss that enables SB to perform effectively across diverse backbones while maintaining competitive performance.
Second, we propose a training-free method called Negative-Away Steer Attention (NASA), which integrates negative prompts into one-step diffusion models via cross-attention to suppress undesired elements in generated images.
arXiv Detail & Related papers (2024-12-03T18:56:32Z) - TAS: Distilling Arbitrary Teacher and Student via a Hybrid Assistant [52.0297393822012]
We introduce an assistant model as a bridge to facilitate smooth feature knowledge transfer between heterogeneous teachers and students.
Within our proposed design principle, the assistant model combines the advantages of cross-architecture inductive biases and module functions.
Our proposed method is evaluated across some homogeneous model pairs and arbitrary heterogeneous combinations of CNNs, ViTs, spatial KDs.
arXiv Detail & Related papers (2024-10-16T08:02:49Z) - Contrastive Learning Via Equivariant Representation [19.112460889771423]
We propose CLeVER, a novel equivariant contrastive learning framework compatible with augmentation strategies of arbitrary complexity.
Experimental results demonstrate that CLeVER effectively extracts and incorporates equivariant information from practical natural images.
arXiv Detail & Related papers (2024-06-01T01:53:51Z) - Learning to Maximize Mutual Information for Chain-of-Thought Distillation [13.660167848386806]
Distilling Step-by-Step(DSS) has demonstrated promise by imbuing smaller models with the superior reasoning capabilities of their larger counterparts.
However, DSS overlooks the intrinsic relationship between the two training tasks, leading to ineffective integration of CoT knowledge with the task of label prediction.
We propose a variational approach to solve this problem using a learning-based method.
arXiv Detail & Related papers (2024-03-05T22:21:45Z) - Robustness-Reinforced Knowledge Distillation with Correlation Distance
and Network Pruning [3.1423836318272773]
Knowledge distillation (KD) improves the performance of efficient and lightweight models.
Most existing KD techniques rely on Kullback-Leibler (KL) divergence.
We propose a Robustness-Reinforced Knowledge Distillation (R2KD) that leverages correlation distance and network pruning.
arXiv Detail & Related papers (2023-11-23T11:34:48Z) - Learning Better with Less: Effective Augmentation for Sample-Efficient
Visual Reinforcement Learning [57.83232242068982]
Data augmentation (DA) is a crucial technique for enhancing the sample efficiency of visual reinforcement learning (RL) algorithms.
It remains unclear which attributes of DA account for its effectiveness in achieving sample-efficient visual RL.
This work conducts comprehensive experiments to assess the impact of DA's attributes on its efficacy.
arXiv Detail & Related papers (2023-05-25T15:46:20Z) - Revisiting Consistency Regularization for Semi-Supervised Learning [80.28461584135967]
We propose an improved consistency regularization framework by a simple yet effective technique, FeatDistLoss.
Experimental results show that our model defines a new state of the art for various datasets and settings.
arXiv Detail & Related papers (2021-12-10T20:46:13Z) - Why Do Self-Supervised Models Transfer? Investigating the Impact of
Invariance on Downstream Tasks [79.13089902898848]
Self-supervised learning is a powerful paradigm for representation learning on unlabelled images.
We show that different tasks in computer vision require features to encode different (in)variances.
arXiv Detail & Related papers (2021-11-22T18:16:35Z) - Regularizing Variational Autoencoder with Diversity and Uncertainty
Awareness [61.827054365139645]
Variational Autoencoder (VAE) approximates the posterior of latent variables based on amortized variational inference.
We propose an alternative model, DU-VAE, for learning a more Diverse and less Uncertain latent space.
arXiv Detail & Related papers (2021-10-24T07:58:13Z) - Similarity Transfer for Knowledge Distillation [25.042405967561212]
Knowledge distillation is a popular paradigm for learning portable neural networks by transferring the knowledge from a large model into a smaller one.
We propose a novel method called similarity transfer for knowledge distillation (STKD), which aims to fully utilize the similarities between categories of multiple samples.
It shows that STKD substantially has outperformed the vanilla knowledge distillation and has achieved superior accuracy over the state-of-the-art knowledge distillation methods.
arXiv Detail & Related papers (2021-03-18T06:54:59Z) - Online Knowledge Distillation via Multi-branch Diversity Enhancement [15.523646047674717]
We propose a new distillation method to enhance the diversity among multiple student models.
We use Feature Fusion Module (FFM), which improves the performance of the attention mechanism in the network.
We also use Diversification(CD) loss function to strengthen the differences between the student models.
arXiv Detail & Related papers (2020-10-02T05:52:12Z) - Residual Knowledge Distillation [96.18815134719975]
This work proposes Residual Knowledge Distillation (RKD), which further distills the knowledge by introducing an assistant (A)
In this way, S is trained to mimic the feature maps of T, and A aids this process by learning the residual error between them.
Experiments show that our approach achieves appealing results on popular classification datasets, CIFAR-100 and ImageNet.
arXiv Detail & Related papers (2020-02-21T07:49:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.