Identification of Non-causal Graphical Models
- URL: http://arxiv.org/abs/2410.09480v1
- Date: Sat, 12 Oct 2024 10:40:46 GMT
- Title: Identification of Non-causal Graphical Models
- Authors: Junyao You, Mattia Zorzi,
- Abstract summary: The paper considers the problem to estimate non-causal graphical models whose edges encode smoothing relations among the variables.
We show that the solution minimizing the transportation distance with respect to white noise process is a double-sided autoregressive non-causal graphical model.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The paper considers the problem to estimate non-causal graphical models whose edges encode smoothing relations among the variables. We propose a new covariance extension problem and show that the solution minimizing the transportation distance with respect to white noise process is a double-sided autoregressive non-causal graphical model. Then, we generalize the paradigm to a class of graphical autoregressive moving-average models. Finally, we test the performance of the proposed method through some numerical experiments.
Related papers
- Joint Graph Learning and Model Fitting in Laplacian Regularized
Stratified Models [5.933030735757292]
Laplacian regularized stratified models (LRSM) are models that utilize the explicit or implicit network structure of the sub-problems.
This paper shows the importance and sensitivity of graph weights in LRSM, and provably show that the sensitivity can be arbitrarily large.
We propose a generic approach to jointly learn the graph while fitting the model parameters by solving a single optimization problem.
arXiv Detail & Related papers (2023-05-04T06:06:29Z) - Deep Graph Reprogramming [112.34663053130073]
"Deep graph reprogramming" is a model reusing task tailored for graph neural networks (GNNs)
We propose an innovative Data Reprogramming paradigm alongside a Model Reprogramming paradigm.
arXiv Detail & Related papers (2023-04-28T02:04:29Z) - Creating generalizable downstream graph models with random projections [22.690120515637854]
We investigate graph representation learning approaches that enable models to generalize across graphs.
We show that using random projections to estimate multiple powers of the transition matrix allows us to build a set of isomorphism-invariant features.
The resulting features can be used to recover enough information about the local neighborhood of a node to enable inference with relevance competitive to other approaches.
arXiv Detail & Related papers (2023-02-17T14:27:00Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Doubly Reparameterized Importance Weighted Structure Learning for Scene
Graph Generation [40.46394569128303]
Scene graph generation, given an input image, aims to explicitly model objects and their relationships by constructing a visually-grounded scene graph.
We propose a novel doubly re parameterized importance weighted structure learning method, which employs a tighter importance weighted lower bound as the variational inference objective.
The proposed method achieves the state-of-the-art performance on various popular scene graph generation benchmarks.
arXiv Detail & Related papers (2022-06-22T20:00:25Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Gaussian Graphical Model Selection for Huge Data via Minipatch Learning [1.2891210250935146]
We propose the Minipatch Graph (MPGraph) estimator to solve the problem of graphical model selection.
MPGraph is a generalization of thresholded graph estimators fit to tiny, random subsets of both the observations and the nodes.
We prove that our algorithm achieves finite-sample graph selection consistency.
arXiv Detail & Related papers (2021-10-22T21:06:48Z) - T-LoHo: A Bayesian Regularization Model for Structured Sparsity and
Smoothness on Graphs [0.0]
In graph-structured data, structured sparsity and smoothness tend to cluster together.
We propose a new prior for high dimensional parameters with graphical relations.
We use it to detect structured sparsity and smoothness simultaneously.
arXiv Detail & Related papers (2021-07-06T10:10:03Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.