DiffuTraj: A Stochastic Vessel Trajectory Prediction Approach via Guided Diffusion Process
- URL: http://arxiv.org/abs/2410.09550v1
- Date: Sat, 12 Oct 2024 14:50:18 GMT
- Title: DiffuTraj: A Stochastic Vessel Trajectory Prediction Approach via Guided Diffusion Process
- Authors: Changlin Li, Yanglei Gan, Tian Lan, Yuxiang Cai, Xueyi Liu, Run Lin, Qiao Liu,
- Abstract summary: Vessel maneuvers, characterized by their inherent complexity and indeterminacy, require vessel trajectory prediction system.
Conventional trajectory prediction methods utilize latent variables to represent the multi-modality of vessel motion.
We explicitly simulate the transition of vessel motion from uncertainty towards a state of certainty.
- Score: 23.42712306116432
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Maritime vessel maneuvers, characterized by their inherent complexity and indeterminacy, requires vessel trajectory prediction system capable of modeling the multi-modality nature of future motion states. Conventional stochastic trajectory prediction methods utilize latent variables to represent the multi-modality of vessel motion, however, tends to overlook the complexity and dynamics inherent in maritime behavior. In contrast, we explicitly simulate the transition of vessel motion from uncertainty towards a state of certainty, effectively handling future indeterminacy in dynamic scenes. In this paper, we present a novel framework (\textit{DiffuTraj}) to conceptualize the trajectory prediction task as a guided reverse process of motion pattern uncertainty diffusion, in which we progressively remove uncertainty from maritime regions to delineate the intended trajectory. Specifically, we encode the previous states of the target vessel, vessel-vessel interactions, and the environment context as guiding factors for trajectory generation. Subsequently, we devise a transformer-based conditional denoiser to capture spatio-temporal dependencies, enabling the generation of trajectories better aligned for particular maritime environment. Comprehensive experiments on vessel trajectory prediction benchmarks demonstrate the superiority of our method.
Related papers
- Traj-Explainer: An Explainable and Robust Multi-modal Trajectory Prediction Approach [12.60529039445456]
Navigating complex traffic environments has been significantly enhanced by advancements in intelligent technologies, enabling accurate environment perception and trajectory prediction for automated vehicles.
Existing research often neglects the consideration of the joint reasoning of scenario agents and lacks interpretability in trajectory prediction models.
An explainability-oriented trajectory prediction model is designed in this work, named Explainable Diffusion Conditional based Multimodal Trajectory Prediction Traj-Explainer.
arXiv Detail & Related papers (2024-10-22T08:17:33Z) - Navigation under uncertainty: Trajectory prediction and occlusion reasoning with switching dynamical systems [36.18758962312406]
We propose a conceptual framework unifying trajectory prediction and occlusion reasoning under the same class of structured probabilistic generative model.
We then present some initial experiments illustrating its capabilities using the open dataset.
arXiv Detail & Related papers (2024-10-14T16:03:41Z) - Mixed Gaussian Flow for Diverse Trajectory Prediction [78.00204650749453]
We propose a flow-based model to transform a mixed Gaussian prior into the future trajectory manifold.
The model shows a better capacity for generating diverse trajectory patterns.
We also demonstrate that it can generate diverse, controllable, and out-of-distribution trajectories.
arXiv Detail & Related papers (2024-02-19T15:48:55Z) - Controllable Diverse Sampling for Diffusion Based Motion Behavior
Forecasting [11.106812447960186]
We introduce a novel trajectory generator named Controllable Diffusion Trajectory (CDT)
CDT integrates information and social interactions into a Transformer-based conditional denoising diffusion model to guide the prediction of future trajectories.
To ensure multimodality, we incorporate behavioral tokens to direct the trajectory's modes, such as going straight, turning right or left.
arXiv Detail & Related papers (2024-02-06T13:16:54Z) - Stochastic Trajectory Prediction via Motion Indeterminacy Diffusion [88.45326906116165]
We present a new framework to formulate the trajectory prediction task as a reverse process of motion indeterminacy diffusion (MID)
We encode the history behavior information and the social interactions as a state embedding and devise a Transformer-based diffusion model to capture the temporal dependencies of trajectories.
Experiments on the human trajectory prediction benchmarks including the Stanford Drone and ETH/UCY datasets demonstrate the superiority of our method.
arXiv Detail & Related papers (2022-03-25T16:59:08Z) - Trajectory Forecasting from Detection with Uncertainty-Aware Motion
Encoding [121.66374635092097]
Trajectories obtained from object detection and tracking are inevitably noisy.
We propose a trajectory predictor directly based on detection results without relying on explicitly formed trajectories.
arXiv Detail & Related papers (2022-02-03T09:09:56Z) - Probabilistic Trajectory Prediction with Structural Constraints [38.90152893402733]
This work addresses the problem of predicting the motion trajectories of dynamic objects in the environment.
Recent advances in predicting motion patterns often rely on machine learning techniques to extrapolate motion patterns from observed trajectories.
We propose a novel framework, which combines probabilistic learning and constrained trajectory optimisation.
arXiv Detail & Related papers (2021-07-09T03:48:14Z) - Congestion-aware Multi-agent Trajectory Prediction for Collision
Avoidance [110.63037190641414]
We propose to learn congestion patterns explicitly and devise a novel "Sense--Learn--Reason--Predict" framework.
By decomposing the learning phases into two stages, a "student" can learn contextual cues from a "teacher" while generating collision-free trajectories.
In experiments, we demonstrate that the proposed model is able to generate collision-free trajectory predictions in a synthetic dataset.
arXiv Detail & Related papers (2021-03-26T02:42:33Z) - Haar Wavelet based Block Autoregressive Flows for Trajectories [129.37479472754083]
Prediction of trajectories such as that of pedestrians is crucial to the performance of autonomous agents.
We introduce a novel Haar wavelet based block autoregressive model leveraging split couplings.
We illustrate the advantages of our approach for generating diverse and accurate trajectories on two real-world datasets.
arXiv Detail & Related papers (2020-09-21T13:57:10Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.