論文の概要: Robust Optical Flow Computation: A Higher-Order Differential Approach
- arxiv url: http://arxiv.org/abs/2410.09563v1
- Date: Sat, 12 Oct 2024 15:20:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 13:45:15.644859
- Title: Robust Optical Flow Computation: A Higher-Order Differential Approach
- Title(参考訳): ロバストな光フロー計算:高次微分法
- Authors: Chanuka Algama, Kasun Amarasinghe,
- Abstract要約: 本研究は,2次テイラー級数近似の高精度化を利用して,光フロー計算のための革新的なアルゴリズムを提案する。
KITTIやMiddleburyのような光学フローベンチマークのパフォーマンスによって、アルゴリズムの機能を示す印象的な例が現れる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In the domain of computer vision, optical flow stands as a cornerstone for unraveling dynamic visual scenes. However, the challenge of accurately estimating optical flow under conditions of large nonlinear motion patterns remains an open question. The image flow constraint is vulnerable to substantial displacements, and rapid spatial transformations. Inaccurate approximations inherent in numerical differentiation techniques can further amplify such intricacies. In response, this research proposes an innovative algorithm for optical flow computation, utilizing the higher precision of second-order Taylor series approximation within the differential estimation framework. By embracing this mathematical underpinning, the research seeks to extract more information about the behavior of the function under complex real-world scenarios and estimate the motion of areas with a lack of texture. An impressive showcase of the algorithm's capabilities emerges through its performance on renowned optical flow benchmarks such as KITTI (2015) and Middlebury. The average endpoint error (AEE), which computes the Euclidian distance between the calculated flow field and the ground truth flow field, stands notably diminished, validating the effectiveness of the algorithm in handling complex motion patterns.
- Abstract(参考訳): コンピュータビジョンの分野では、光学フローは動的視覚シーンの展開の基盤となる。
しかし、大きな非線形運動パターンの条件下での光学的流れを正確に推定するという課題は未解決のままである。
画像フローの制約は、かなりの変位と高速な空間変換に弱い。
数値微分法に固有の不正確な近似は、そのような複雑さをさらに増幅することができる。
そこで本研究では,微分推定フレームワーク内での2次テイラー級数近似の高精度化を利用して,光フロー計算のための革新的なアルゴリズムを提案する。
この数学的基盤を受け入れることで、複雑な現実世界のシナリオ下での関数の振る舞いに関するより多くの情報を抽出し、テクスチャの欠如で領域の動きを推定する。
2015年のKITTI(英語版)やミドルベリー(英語版)のような有名な光学フローベンチマークのパフォーマンスによって、アルゴリズムの能力の印象的な見せかけが現れる。
計算された流れ場と地上の真理流場との間のユークリッド距離を計算する平均終端誤差(AEE)は顕著に減少し、複雑な動きパターンを扱うアルゴリズムの有効性を検証している。
関連論文リスト
- Motion-prior Contrast Maximization for Dense Continuous-Time Motion Estimation [34.529280562470746]
コントラスト最大化フレームワークと非直線運動を組み合わせた新たな自己監督的損失を画素レベルの軌跡の形で導入する。
連続時間運動の高密度推定では, 合成学習モデルのゼロショット性能を29%向上する。
論文 参考訳(メタデータ) (2024-07-15T15:18:28Z) - Rethink Predicting the Optical Flow with the Kinetics Perspective [1.7901503554839604]
光フロー推定は、低レベルコンピュータビジョンにおける基本的なタスクの1つである。
見かけ上は、連続したフレーム内の画素間の相関として光学フローを見ることができる。
本稿では,このモチベーションから明らかな情報と運動学情報を組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2024-05-21T05:47:42Z) - Motion-Aware Video Frame Interpolation [49.49668436390514]
我々は、連続するフレームから中間光の流れを直接推定する動き対応ビデオフレーム補間(MA-VFI)ネットワークを導入する。
受容場が異なる入力フレームからグローバルな意味関係と空間的詳細を抽出するだけでなく、必要な計算コストと複雑さを効果的に削減する。
論文 参考訳(メタデータ) (2024-02-05T11:00:14Z) - GAFlow: Incorporating Gaussian Attention into Optical Flow [62.646389181507764]
我々はガウス的注意(GA)を光学フローモデルに押し込み、表現学習中に局所特性をアクセントする。
本稿では,既存の Transformer ブロックに簡単に接続可能な新しい Gaussian-Constrained Layer (GCL) を提案する。
動作解析のための新しいガウス誘導注意モジュール(GGAM)を提供する。
論文 参考訳(メタデータ) (2023-09-28T07:46:01Z) - SSTM: Spatiotemporal Recurrent Transformers for Multi-frame Optical Flow
Estimation [0.0]
クローズド領域および外界領域における光流量推定は、光流量推定アルゴリズムの現在の重要な限界の2つである。
最近の最先端の光学フロー推定アルゴリズムは、連続した画像対ごとに連続して光フローを推定する2フレームベースの手法である。
多フレーム画像列から2つ以上の連続する光フローを並列に推定する学習型多フレーム光フロー推定法を提案する。
論文 参考訳(メタデータ) (2023-04-26T23:39:40Z) - Sensor-Guided Optical Flow [53.295332513139925]
本稿では、未知の領域や未知の領域において、より優れた精度を実現するために、外部キューを用いた光フローネットワークを誘導するフレームワークを提案する。
能動センサからの深度測定と幾何および手作り光学フローアルゴリズムを組み合わせることで,これらがどのように得られるかを示す。
論文 参考訳(メタデータ) (2021-09-30T17:59:57Z) - Dense Optical Flow from Event Cameras [55.79329250951028]
本稿では,イベントカメラからの高密度光フロー推定に特徴相関と逐次処理を導入することを提案する。
提案手法は、高密度光流を計算し、MVSEC上での終点誤差を23%削減する。
論文 参考訳(メタデータ) (2021-08-24T07:39:08Z) - PCA Event-Based Otical Flow for Visual Odometry [0.0]
本稿では,イベントベース光流量推定問題に対する主成分分析手法を提案する。
提案手法の最良の変種は,ビジュアルオドメトリーのリアルタイムコンテキストを対象とし,最先端実装と比較して約2倍高速であることを示す。
論文 参考訳(メタデータ) (2021-05-08T18:30:44Z) - Unsupervised Motion Representation Enhanced Network for Action
Recognition [4.42249337449125]
連続するフレーム間の動きの表現は、ビデオの理解を大いに促進することが証明されている。
効果的な光フロー解決器であるTV-L1法は、抽出した光フローをキャッシュするために時間と費用がかかる。
UF-TSN(UF-TSN)は、軽量な非監視光フロー推定器を組み込んだ、エンドツーエンドのアクション認識手法です。
論文 参考訳(メタデータ) (2021-03-05T04:14:32Z) - STaRFlow: A SpatioTemporal Recurrent Cell for Lightweight Multi-Frame
Optical Flow Estimation [64.99259320624148]
マルチフレーム光フロー推定のための軽量CNNアルゴリズムを提案する。
結果のSTaRFlowアルゴリズムは、MPI SintelとKitti2015で最先端のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2020-07-10T17:01:34Z) - Joint Unsupervised Learning of Optical Flow and Egomotion with Bi-Level
Optimization [59.9673626329892]
エピポーラ幾何を用いた光学フローとカメラモーションのグローバルな関係を利用する。
我々は暗黙の微分を用いて、その実装とは無関係に低レベルの幾何最適化層を通してバックプロパゲーションを可能にする。
論文 参考訳(メタデータ) (2020-02-26T22:28:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。