Second-Order Min-Max Optimization with Lazy Hessians
- URL: http://arxiv.org/abs/2410.09568v1
- Date: Sat, 12 Oct 2024 15:30:17 GMT
- Title: Second-Order Min-Max Optimization with Lazy Hessians
- Authors: Lesi Chen, Chengchang Liu, Jingzhao Zhang,
- Abstract summary: This paper studies second-order methods for convex-concave minimax optimization.
We show that the computation cost can be reduced by Hessian across iterations.
- Score: 17.17389531402505
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies second-order methods for convex-concave minimax optimization. Monteiro and Svaiter (2012) proposed a method to solve the problem with an optimal iteration complexity of $\mathcal{O}(\epsilon^{-3/2})$ to find an $\epsilon$-saddle point. However, it is unclear whether the computational complexity, $\mathcal{O}((N+ d^2) d \epsilon^{-2/3})$, can be improved. In the above, we follow Doikov et al. (2023) and assume the complexity of obtaining a first-order oracle as $N$ and the complexity of obtaining a second-order oracle as $dN$. In this paper, we show that the computation cost can be reduced by reusing Hessian across iterations. Our methods take the overall computational complexity of $ \tilde{\mathcal{O}}( (N+d^2)(d+ d^{2/3}\epsilon^{-2/3}))$, which improves those of previous methods by a factor of $d^{1/3}$. Furthermore, we generalize our method to strongly-convex-strongly-concave minimax problems and establish the complexity of $\tilde{\mathcal{O}}((N+d^2) (d + d^{2/3} \kappa^{2/3}) )$ when the condition number of the problem is $\kappa$, enjoying a similar speedup upon the state-of-the-art method. Numerical experiments on both real and synthetic datasets also verify the efficiency of our method.
Related papers
- Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms [65.42376001308064]
We propose two variance reduced ZO estimators for complex gradient problems.
We improve the state-of-the-art function complexities from $mathcalOleft(minfracdn1/2epsilon2, fracdepsilon3right)$ to $tildecalOleft(fracdepsilon2right)$.
arXiv Detail & Related papers (2024-10-03T15:04:01Z) - Efficient Continual Finite-Sum Minimization [52.5238287567572]
We propose a key twist into the finite-sum minimization, dubbed as continual finite-sum minimization.
Our approach significantly improves upon the $mathcalO(n/epsilon)$ FOs that $mathrmStochasticGradientDescent$ requires.
We also prove that there is no natural first-order method with $mathcalOleft(n/epsilonalpharight)$ complexity gradient for $alpha 1/4$, establishing that the first-order complexity of our method is nearly tight.
arXiv Detail & Related papers (2024-06-07T08:26:31Z) - Accelerated Variance-Reduced Forward-Reflected Methods for Root-Finding Problems [8.0153031008486]
We propose a novel class of Nesterov's accelerated forward-reflected-based methods with variance reduction to solve root-finding problems.
Our algorithm is single-loop and leverages a new family of unbiased variance-reduced estimators specifically designed for root-finding problems.
arXiv Detail & Related papers (2024-06-04T15:23:29Z) - Dueling Optimization with a Monotone Adversary [35.850072415395395]
We study the problem of dueling optimization with a monotone adversary, which is a generalization of (noiseless) dueling convex optimization.
The goal is to design an online algorithm to find a minimizer $mathbfx*$ for a function $fcolon X to mathbbRd.
arXiv Detail & Related papers (2023-11-18T23:55:59Z) - Accelerating Inexact HyperGradient Descent for Bilevel Optimization [84.00488779515206]
We present a method for solving general non-strongly-concave bilevel optimization problems.
Our results also improve upon the existing complexity for finding second-order stationary points in non-strongly-concave problems.
arXiv Detail & Related papers (2023-06-30T20:36:44Z) - A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization [53.044526424637866]
In this paper we consider finding an approximate second-order stationary point (SOSP) that minimizes a twice different subject general non conic optimization.
In particular, we propose a Newton-CG based-augmentedconjugate method for finding an approximate SOSP.
arXiv Detail & Related papers (2023-01-10T20:43:29Z) - Decomposable Non-Smooth Convex Optimization with Nearly-Linear Gradient
Oracle Complexity [15.18055488087588]
We give an algorithm that minimizes the above convex formulation to $epsilon$-accuracy in $widetildeO(sum_i=1n d_i log (1 /epsilon))$ gradient computations.
Our main technical contribution is an adaptive procedure to select an $f_i$ term at every iteration via a novel combination of cutting-plane and interior-point methods.
arXiv Detail & Related papers (2022-08-07T20:53:42Z) - The First Optimal Acceleration of High-Order Methods in Smooth Convex
Optimization [88.91190483500932]
We study the fundamental open question of finding the optimal high-order algorithm for solving smooth convex minimization problems.
The reason for this is that these algorithms require performing a complex binary procedure, which makes them neither optimal nor practical.
We fix this fundamental issue by providing the first algorithm with $mathcalOleft(epsilon-2/(p+1)right) $pth order oracle complexity.
arXiv Detail & Related papers (2022-05-19T16:04:40Z) - Thinking Inside the Ball: Near-Optimal Minimization of the Maximal Loss [41.17536985461902]
We prove an oracle complexity lower bound scaling as $Omega(Nepsilon-2/3)$, showing that our dependence on $N$ is optimal up to polylogarithmic factors.
We develop methods with improved complexity bounds of $tildeO(Nepsilon-2/3 + sqrtNepsilon-8/3)$ in the non-smooth case and $tildeO(Nepsilon-2/3 + sqrtNepsilon-1)$ in
arXiv Detail & Related papers (2021-05-04T21:49:15Z) - Nonconvex Zeroth-Order Stochastic ADMM Methods with Lower Function Query
Complexity [109.54166127479093]
Zeroth-order (a.k.a, derivative-free) methods are a class of effective optimization methods for solving machine learning problems.
In this paper, we propose a class faster faster zerothorder alternating gradient method multipliers (MMADMM) to solve the non finitesum problems.
We show that ZOMMAD methods can achieve a lower function $O(frac13nfrac1)$ for finding an $epsilon$-stationary point.
At the same time, we propose a class faster zerothorder online ADM methods (M
arXiv Detail & Related papers (2019-07-30T02:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.