論文の概要: ReLU's Revival: On the Entropic Overload in Normalization-Free Large Language Models
- arxiv url: http://arxiv.org/abs/2410.09637v3
- Date: Sat, 16 Nov 2024 17:59:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:30:37.185124
- Title: ReLU's Revival: On the Entropic Overload in Normalization-Free Large Language Models
- Title(参考訳): ReLUの復活: 正規化自由大言語モデルにおけるエントロピー過負荷について
- Authors: Nandan Kumar Jha, Brandon Reagen,
- Abstract要約: LayerNormは、トレーニングの安定化とスムーズな最適化を保証するため、現代の大規模言語モデル(LLM)において重要なコンポーネントである。
本研究は、正規化自由デコーダのみのLLMにおける望ましいアクティベーション関数について検討する。
ReLUは、LayerNormフリーモデルでGELUを著しく上回り、bf 8.2%のパープレキシティ改善をもたらした。
- 参考スコア(独自算出の注目度): 3.7802450241986945
- License:
- Abstract: LayerNorm is a critical component in modern large language models (LLMs) for stabilizing training and ensuring smooth optimization. However, it introduces significant challenges in mechanistic interpretability, outlier feature suppression, faithful signal propagation, and computational and communication complexity of private inference. This work explores desirable activation functions in normalization-free decoder-only LLMs. Contrary to the conventional preference for the GELU in transformer-based models, our empirical findings demonstrate an {\em opposite trend} -- ReLU significantly outperforms GELU in LayerNorm-free models, leading to an {\bf 8.2\%} perplexity improvement. We discover a key issue with GELU, where early layers experience entropic overload, leading to the under-utilization of the representational capacity of attention heads. This highlights that smoother activations like GELU are {\em ill-suited} for LayerNorm-free architectures, whereas ReLU's geometrical properties -- specialization in input space and intra-class selectivity -- lead to improved learning dynamics and better information retention in the absence of LayerNorm. This study offers key insights for optimizing transformer architectures where LayerNorm introduces significant challenges. The code and implementation are available at https://github.com/Nandan91/relu-revival-normfree
- Abstract(参考訳): LayerNormは、トレーニングの安定化とスムーズな最適化を保証するため、現代の大規模言語モデル(LLM)において重要なコンポーネントである。
しかし、機械的解釈可能性、外乱特性抑制、忠実な信号伝達、およびプライベート推論の計算と通信の複雑さにおいて大きな課題が持ち込まれている。
本研究は、正規化自由デコーダのみのLLMにおける望ましいアクティベーション関数について検討する。
変換器モデルにおけるGELUの従来の嗜好とは対照的に、我々の実証的な結果は、ReLUがレイヤーノームフリーモデルにおいてGELUを著しく上回っていることを示す。
GELUでは,初期層がエントロピックオーバーロードを経験し,アテンションヘッドの表現能力の過小評価に繋がる重要な問題を発見した。
これは、GELUのようなスムーズなアクティベーションがLayerNormのないアーキテクチャに不適であるのに対して、ReLUの幾何学的性質(入力空間の特殊化とクラス内選択性)がLayerNormがない場合の学習ダイナミクスの改善と情報保持の改善につながっていることを強調している。
この研究は、LayerNormが大きな課題をもたらすトランスフォーマーアーキテクチャを最適化するための重要な洞察を提供する。
コードと実装はhttps://github.com/Nandan91/relu-revival-normfreeで公開されている。
関連論文リスト
- Hysteresis Activation Function for Efficient Inference [3.5223695602582614]
本稿では,Hysteresis Rectified Linear Unit (HLU) を提案する。
トレーニングと推論のための固定しきい値を持つ従来のアクティベーション関数とは異なり、HLUはバックプロパゲーションを洗練させる可変しきい値を使用する。
論文 参考訳(メタデータ) (2024-11-15T20:46:58Z) - RecurFormer: Not All Transformer Heads Need Self-Attention [14.331807060659902]
変換器をベースとした大規模言語モデル(LLM)は複雑な言語パターンをモデル化する上で優れているが、推論時にかなりの計算コストに直面している。
本稿では,リニアリカレントニューラルネットワークに注意を向ける新しいアーキテクチャであるRecurFormerを提案する。
論文 参考訳(メタデータ) (2024-10-10T15:24:12Z) - Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning [27.991291785091736]
我々は、不要なデータの影響と関連するモデル機能を取り除くことを目的とした、大規模言語モデル(LLM)アンラーニングの問題に対処する。
我々はSimNPOと呼ばれるシンプルで効果的なアンラーニング最適化フレームワークを提案し、参照モデルに依存しない場合の「単純さ」がアンラーニングの恩恵をもたらすことを示す。
論文 参考訳(メタデータ) (2024-10-09T17:58:12Z) - GLARE: Low Light Image Enhancement via Generative Latent Feature based Codebook Retrieval [80.96706764868898]
我々は、GLARE(Generative LAtent Feature based codebook Retrieval)を介して、新しい低照度画像強調(LLIE)ネットワークを提案する。
Invertible Latent Normalizing Flow (I-LNF) モジュールを開発し、LL特徴分布をNL潜在表現に整合させ、コードブック内の正しいコード検索を保証する。
さまざまなベンチマークデータセットと実世界のデータに対するGLAREの優れたパフォーマンスを確認する実験。
論文 参考訳(メタデータ) (2024-07-17T09:40:15Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
本研究では, 分布域外領域を積極的に探索するために, 潜在的に高次応答に対して楽観的に偏りを呈する2段階的客観性を提案する。
実験の結果,Zephyr-7B-SFTとLlama-3-8B-Instructモデルで微調整した場合,SELM(Self-Exploring Language Models)は命令追従ベンチマークの性能を大幅に向上させることがわかった。
論文 参考訳(メタデータ) (2024-05-29T17:59:07Z) - Revisiting Zeroth-Order Optimization for Memory-Efficient LLM Fine-Tuning: A Benchmark [166.40879020706151]
本稿では、微調整時のメモリコスト低減のためのソリューションとして、BPフリーゼロオーダー最適化(ZO)への移行を提案する。
従来のZO-SGD法とは異なり、我々の研究はより広い範囲のZO最適化手法に探索を広げる。
本研究は,タスクアライメントの重要性,前方勾配法の役割,アルゴリズムの複雑さと微調整性能のバランスについて,これまで見過ごされてきた最適化原理を明らかにした。
論文 参考訳(メタデータ) (2024-02-18T14:08:48Z) - CRaSh: Clustering, Removing, and Sharing Enhance Fine-tuning without
Full Large Language Model [22.870512676002463]
本稿では,集中型LCMと下流エミュレータ間でトランスフォーマブロックを転送する代表的手法であるOffsite-Tuning(OFT)に焦点を当てる。
これらの観測にインスパイアされたCRaShは、LCMから改善エミュレータを導出するトレーニングフリー戦略であるClustering、Removing、Sharingを含む。
以上の結果から,CRaShとOFTの有効性が明らかとなった。
論文 参考訳(メタデータ) (2023-10-24T03:08:58Z) - GIFD: A Generative Gradient Inversion Method with Feature Domain
Optimization [52.55628139825667]
Federated Learning(FL)は、クライアントのプライバシを保護するための有望な分散機械学習フレームワークとして登場した。
近年の研究では、事前学習された生成逆ネットワーク(GAN)を事前知識として活用することにより、攻撃者が共有勾配を逆転し、FLシステムに対する機密データを回復できることが示されている。
textbfGradient textbfInversion over textbfFeature textbfDomains (GIFD)を提案する。
論文 参考訳(メタデータ) (2023-08-09T04:34:21Z) - Efficient Semantic Image Synthesis via Class-Adaptive Normalization [116.63715955932174]
クラス適応正規化(CLADE)は、セマンティッククラスにのみ適応する軽量かつ等価なバリアントである。
セマンティクスレイアウトから計算したクラス内位置マップエンコーディングを導入し,cladeの正規化パラメータを変調する。
提案されたCLADEは異なるSPADEベースのメソッドに一般化し、SPADEと比較して同等の生成品質を達成できる。
論文 参考訳(メタデータ) (2020-12-08T18:59:32Z) - Evolving Normalization-Activation Layers [100.82879448303805]
我々は、うまく機能しない候補層を迅速にフィルタリングする効率的な拒絶プロトコルを開発した。
EvoNormsは、新しい正規化活性化層であり、新しい構造を持ち、時には驚くべき構造を持つ。
我々の実験は、EvoNormsがResNets、MobileNets、EfficientNetsなどの画像分類モデルでうまく機能していることを示している。
論文 参考訳(メタデータ) (2020-04-06T19:52:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。