Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning
- URL: http://arxiv.org/abs/2410.09676v2
- Date: Thu, 17 Oct 2024 22:20:01 GMT
- Title: Uncovering Attacks and Defenses in Secure Aggregation for Federated Deep Learning
- Authors: Yiwei Zhang, Rouzbeh Behnia, Attila A. Yavuz, Reza Ebrahimi, Elisa Bertino,
- Abstract summary: Federated learning enables the collaborative learning of a global model on diverse data, preserving data locality and eliminating the need to transfer user data to a central server.
Secure aggregation protocols are designed to mask/encrypt user updates and enable a central server to aggregate the masked information.
MicroSecAgg (PoPETS 2024) proposes a single server secure aggregation protocol that aims to mitigate the high communication complexity of the existing approaches.
- Score: 17.45950557331482
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning enables the collaborative learning of a global model on diverse data, preserving data locality and eliminating the need to transfer user data to a central server. However, data privacy remains vulnerable, as attacks can target user training data by exploiting the updates sent by users during each learning iteration. Secure aggregation protocols are designed to mask/encrypt user updates and enable a central server to aggregate the masked information. MicroSecAgg (PoPETS 2024) proposes a single server secure aggregation protocol that aims to mitigate the high communication complexity of the existing approaches by enabling a one-time setup of the secret to be re-used in multiple training iterations. In this paper, we identify a security flaw in the MicroSecAgg that undermines its privacy guarantees. We detail the security flaw and our attack, demonstrating how an adversary can exploit predictable masking values to compromise user privacy. Our findings highlight the critical need for enhanced security measures in secure aggregation protocols, particularly the implementation of dynamic and unpredictable masking strategies. We propose potential countermeasures to mitigate these vulnerabilities and ensure robust privacy protection in the secure aggregation frameworks.
Related papers
- The Communication-Friendly Privacy-Preserving Machine Learning against Malicious Adversaries [14.232901861974819]
Privacy-preserving machine learning (PPML) is an innovative approach that allows for secure data analysis while safeguarding sensitive information.
We introduce efficient protocol for secure linear function evaluation.
We extend the protocol to handle linear and non-linear layers, ensuring compatibility with a wide range of machine-learning models.
arXiv Detail & Related papers (2024-11-14T08:55:14Z) - PriRoAgg: Achieving Robust Model Aggregation with Minimum Privacy Leakage for Federated Learning [49.916365792036636]
Federated learning (FL) has recently gained significant momentum due to its potential to leverage large-scale distributed user data.
The transmitted model updates can potentially leak sensitive user information, and the lack of central control of the local training process leaves the global model susceptible to malicious manipulations on model updates.
We develop a general framework PriRoAgg, utilizing Lagrange coded computing and distributed zero-knowledge proof, to execute a wide range of robust aggregation algorithms while satisfying aggregated privacy.
arXiv Detail & Related papers (2024-07-12T03:18:08Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
We investigate the privacy implications of SecAgg in federated learning.
We show that SecAgg offers weak privacy against membership inference attacks even in a single training round.
Our findings underscore the imperative for additional privacy-enhancing mechanisms, such as noise injection.
arXiv Detail & Related papers (2024-03-26T15:07:58Z) - A Survey and Comparative Analysis of Security Properties of CAN Authentication Protocols [92.81385447582882]
The Controller Area Network (CAN) bus leaves in-vehicle communications inherently non-secure.
This paper reviews and compares the 15 most prominent authentication protocols for the CAN bus.
We evaluate protocols based on essential operational criteria that contribute to ease of implementation.
arXiv Detail & Related papers (2024-01-19T14:52:04Z) - Security and Privacy Issues of Federated Learning [0.0]
Federated Learning (FL) has emerged as a promising approach to address data privacy and confidentiality concerns.
This paper presents a comprehensive taxonomy of security and privacy challenges in Federated Learning (FL) across various machine learning models.
arXiv Detail & Related papers (2023-07-22T22:51:07Z) - FedDefender: Client-Side Attack-Tolerant Federated Learning [60.576073964874]
Federated learning enables learning from decentralized data sources without compromising privacy.
It is vulnerable to model poisoning attacks, where malicious clients interfere with the training process.
We propose a new defense mechanism that focuses on the client-side, called FedDefender, to help benign clients train robust local models.
arXiv Detail & Related papers (2023-07-18T08:00:41Z) - Secure Aggregation Is Not All You Need: Mitigating Privacy Attacks with
Noise Tolerance in Federated Learning [0.0]
Federated learning aims to preserve data privacy while creating AI models.
Current approaches rely heavily on secure aggregation protocols to preserve data privacy.
We investigate vulnerabilities to secure aggregation that could arise if the server is fully malicious.
arXiv Detail & Related papers (2022-11-10T05:13:08Z) - Eluding Secure Aggregation in Federated Learning via Model Inconsistency [2.647302105102753]
Federated learning allows a set of users to train a deep neural network over their private training datasets.
We show that a malicious server can easily elude secure aggregation as if the latter were not in place.
We devise two different attacks capable of inferring information on individual private training datasets.
arXiv Detail & Related papers (2021-11-14T16:09:11Z) - Unleashing the Tiger: Inference Attacks on Split Learning [2.492607582091531]
We introduce general attack strategies targeting the reconstruction of clients' private training sets.
A malicious server can actively hijack the learning process of the distributed model.
We demonstrate our attack is able to overcome recently proposed defensive techniques.
arXiv Detail & Related papers (2020-12-04T15:41:00Z) - Towards Bidirectional Protection in Federated Learning [70.36925233356335]
F2ED-LEARNING offers bidirectional defense against malicious centralized server and Byzantine malicious clients.
F2ED-LEARNING securely aggregates each shard's update and launches FilterL2 on updates from different shards.
evaluation shows that F2ED-LEARNING consistently achieves optimal or close-to-optimal performance.
arXiv Detail & Related papers (2020-10-02T19:37:02Z) - Privacy-preserving Traffic Flow Prediction: A Federated Learning
Approach [61.64006416975458]
We propose a privacy-preserving machine learning technique named Federated Learning-based Gated Recurrent Unit neural network algorithm (FedGRU) for traffic flow prediction.
FedGRU differs from current centralized learning methods and updates universal learning models through a secure parameter aggregation mechanism.
It is shown that FedGRU's prediction accuracy is 90.96% higher than the advanced deep learning models.
arXiv Detail & Related papers (2020-03-19T13:07:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.