Meta-Reinforcement Learning with Universal Policy Adaptation: Provable Near-Optimality under All-task Optimum Comparator
- URL: http://arxiv.org/abs/2410.09728v1
- Date: Sun, 13 Oct 2024 05:17:58 GMT
- Title: Meta-Reinforcement Learning with Universal Policy Adaptation: Provable Near-Optimality under All-task Optimum Comparator
- Authors: Siyuan Xu, Minghui Zhu,
- Abstract summary: We develop a bilevel optimization framework for meta-RL (BO-MRL) to learn the meta-prior for task-specific policy adaptation.
We empirically validate the correctness of the derived upper bounds and demonstrate the superior effectiveness of the proposed algorithm over benchmarks.
- Score: 9.900800253949512
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Meta-reinforcement learning (Meta-RL) has attracted attention due to its capability to enhance reinforcement learning (RL) algorithms, in terms of data efficiency and generalizability. In this paper, we develop a bilevel optimization framework for meta-RL (BO-MRL) to learn the meta-prior for task-specific policy adaptation, which implements multiple-step policy optimization on one-time data collection. Beyond existing meta-RL analyses, we provide upper bounds of the expected optimality gap over the task distribution. This metric measures the distance of the policy adaptation from the learned meta-prior to the task-specific optimum, and quantifies the model's generalizability to the task distribution. We empirically validate the correctness of the derived upper bounds and demonstrate the superior effectiveness of the proposed algorithm over benchmarks.
Related papers
- Towards Efficient Exact Optimization of Language Model Alignment [93.39181634597877]
Direct preference optimization (DPO) was proposed to directly optimize the policy from preference data.
We show that DPO derived based on the optimal solution of problem leads to a compromised mean-seeking approximation of the optimal solution in practice.
We propose efficient exact optimization (EXO) of the alignment objective.
arXiv Detail & Related papers (2024-02-01T18:51:54Z) - Acceleration in Policy Optimization [50.323182853069184]
We work towards a unifying paradigm for accelerating policy optimization methods in reinforcement learning (RL) by integrating foresight in the policy improvement step via optimistic and adaptive updates.
We define optimism as predictive modelling of the future behavior of a policy, and adaptivity as taking immediate and anticipatory corrective actions to mitigate errors from overshooting predictions or delayed responses to change.
We design an optimistic policy gradient algorithm, adaptive via meta-gradient learning, and empirically highlight several design choices pertaining to acceleration, in an illustrative task.
arXiv Detail & Related papers (2023-06-18T15:50:57Z) - On First-Order Meta-Reinforcement Learning with Moreau Envelopes [1.519321208145928]
Meta-Reinforcement Learning (MRL) is a promising framework for training agents that can quickly adapt to new environments tasks.
We propose a novel Moreau envelope surrogate regularizers that jointly learn meta-Reinforcement Learning (MEMRL)
We show the effectiveness of MEMRL on a gradient-based multi-task-navigation problem.
arXiv Detail & Related papers (2023-05-20T15:46:55Z) - Scalable PAC-Bayesian Meta-Learning via the PAC-Optimal Hyper-Posterior:
From Theory to Practice [54.03076395748459]
A central question in the meta-learning literature is how to regularize to ensure generalization to unseen tasks.
We present a generalization bound for meta-learning, which was first derived by Rothfuss et al.
We provide a theoretical analysis and empirical case study under which conditions and to what extent these guarantees for meta-learning improve upon PAC-Bayesian per-task learning bounds.
arXiv Detail & Related papers (2022-11-14T08:51:04Z) - On the Convergence Theory of Meta Reinforcement Learning with
Personalized Policies [26.225293232912716]
This paper proposes a novel personalized Meta-RL (pMeta-RL) algorithm.
It aggregates task-specific personalized policies to update a meta-policy used for all tasks, while maintaining personalized policies to maximize the average return of each task.
Experiment results show that the proposed algorithms outperform other previous Meta-RL algorithms on Gym and MuJoCo suites.
arXiv Detail & Related papers (2022-09-21T02:27:56Z) - Towards Deployment-Efficient Reinforcement Learning: Lower Bound and
Optimality [141.89413461337324]
Deployment efficiency is an important criterion for many real-world applications of reinforcement learning (RL)
We propose a theoretical formulation for deployment-efficient RL (DE-RL) from an "optimization with constraints" perspective.
arXiv Detail & Related papers (2022-02-14T01:31:46Z) - Model-Based Offline Meta-Reinforcement Learning with Regularization [63.35040401948943]
offline Meta-RL is emerging as a promising approach to address these challenges.
MerPO learns a meta-model for efficient task structure inference and an informative meta-policy.
We show that MerPO offers guaranteed improvement over both the behavior policy and the meta-policy.
arXiv Detail & Related papers (2022-02-07T04:15:20Z) - On the Global Optimality of Model-Agnostic Meta-Learning [133.16370011229776]
Model-a meta-learning (MAML) formulates meta-learning as a bilevel optimization problem, where the inner level solves each subtask based on a shared prior.
We characterize optimality of the stationary points attained by MAML for both learning and supervised learning, where the inner-level outer-level problems are solved via first-order optimization methods.
arXiv Detail & Related papers (2020-06-23T17:33:14Z) - Model-based Adversarial Meta-Reinforcement Learning [38.28304764312512]
We propose Model-based Adversarial Meta-Reinforcement Learning (AdMRL)
AdMRL aims to minimize the worst-case sub-optimality gap across all tasks in a family of tasks.
We evaluate our approach on several continuous control benchmarks and demonstrate its efficacy in the worst-case performance over all tasks.
arXiv Detail & Related papers (2020-06-16T02:21:49Z) - Curriculum in Gradient-Based Meta-Reinforcement Learning [10.447238563837173]
We show that gradient-based meta-learners are sensitive to task distributions.
With the wrong curriculum, agents suffer the effects of meta-overfitting, shallow adaptation, and adaptation instability.
arXiv Detail & Related papers (2020-02-19T01:40:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.