Distributed Intelligent Video Surveillance for Early Armed Robbery Detection based on Deep Learning
- URL: http://arxiv.org/abs/2410.09731v1
- Date: Sun, 13 Oct 2024 05:20:35 GMT
- Title: Distributed Intelligent Video Surveillance for Early Armed Robbery Detection based on Deep Learning
- Authors: Sergio Fernandez-Testa, Edwin Salcedo,
- Abstract summary: Low employment rates in Latin America have contributed to a substantial rise in crime, prompting the emergence of new criminal tactics.
Recent research has approached the problem by embedding weapon detectors in surveillance cameras.
These systems are prone to false positives if no counterpart confirms the event.
We present a distributed IoT system that integrates a computer vision pipeline and object detection capabilities into multiple end-devices.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low employment rates in Latin America have contributed to a substantial rise in crime, prompting the emergence of new criminal tactics. For instance, "express robbery" has become a common crime committed by armed thieves, in which they drive motorcycles and assault people in public in a matter of seconds. Recent research has approached the problem by embedding weapon detectors in surveillance cameras; however, these systems are prone to false positives if no counterpart confirms the event. In light of this, we present a distributed IoT system that integrates a computer vision pipeline and object detection capabilities into multiple end-devices, constantly monitoring for the presence of firearms and sharp weapons. Once a weapon is detected, the end-device sends a series of frames to a cloud server that implements a 3DCNN to classify the scene as either a robbery or a normal situation, thus minimizing false positives. The deep learning process to train and deploy weapon detection models uses a custom dataset with 16,799 images of firearms and sharp weapons. The best-performing model, YOLOv5s, optimized using TensorRT, achieved a final mAP of 0.87 running at 4.43 FPS. Additionally, the 3DCNN demonstrated 0.88 accuracy in detecting abnormal situations. Extensive experiments validate that the proposed system significantly reduces false positives while autonomously monitoring multiple locations in real-time.
Related papers
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
We introduce a framework for quantifying uncertainty in 3D object detection by leveraging an evidential learning loss on Bird's Eye View representations in the 3D detector.
We demonstrate both the efficacy and importance of these uncertainty estimates on identifying out-of-distribution scenes, poorly localized objects, and missing (false negative) detections.
arXiv Detail & Related papers (2024-10-31T13:13:32Z) - Real Time Deep Learning Weapon Detection Techniques for Mitigating Lone Wolf Attacks [0.0]
This research focuses on (You Look Only Once) family and Faster RCNN family for model validation and training.
Models achieve the highest score of 78% with an inference speed of 8.1ms.
However, Faster RCNN models achieve the highest AP 89%.
arXiv Detail & Related papers (2024-05-23T03:48:26Z) - Active shooter detection and robust tracking utilizing supplemental
synthetic data [6.719034568121972]
Gun violence in the United States has led to a focus on developing systems to improve public safety.
One approach is to detect and track shooters, which would help prevent or mitigate the impact of violent incidents.
We propose detecting shooters as a whole, rather than just guns, which would allow for improved tracking robustness.
arXiv Detail & Related papers (2023-09-06T21:58:58Z) - CCTV-Gun: Benchmarking Handgun Detection in CCTV Images [59.24281591714385]
Gun violence is a critical security problem, and it is imperative for the computer vision community to develop effective gun detection algorithms.
detecting guns in real-world CCTV images remains a challenging and under-explored task.
We present a benchmark, called textbfCCTV-Gun, which addresses the challenges of detecting handguns in real-world CCTV images.
arXiv Detail & Related papers (2023-03-19T16:17:35Z) - Using Undervolting as an On-Device Defense Against Adversarial Machine
Learning Attacks [1.9212368803706579]
We propose a novel, lightweight adversarial correction and/or detection mechanism for image classifiers.
We show that these errors disrupt the adversarial input in a way that can be used either to correct the classification or detect the input as adversarial.
arXiv Detail & Related papers (2021-07-20T23:21:04Z) - MULTICAST: MULTI Confirmation-level Alarm SysTem based on CNN and LSTM
to mitigate false alarms for handgun detection in video-surveillance [11.626928736124038]
Multi Confirmation-level Alarm SysTem based on CNN and Long Short Term Memory networks (LSTM) (MULTICAST)
Our experiments show that MULTICAST reduces by 80% the number of false alarms with respect to Faster R-CNN based-single-image detector.
arXiv Detail & Related papers (2021-04-23T15:07:58Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
Crowd counting has drawn much attention due to its importance in safety-critical surveillance systems.
Recent studies have demonstrated that deep neural network (DNN) methods are vulnerable to adversarial attacks.
We propose a robust attack strategy called Adversarial Patch Attack with Momentum to evaluate the robustness of crowd counting models.
arXiv Detail & Related papers (2021-04-22T05:10:55Z) - Exploring Adversarial Robustness of Multi-Sensor Perception Systems in
Self Driving [87.3492357041748]
In this paper, we showcase practical susceptibilities of multi-sensor detection by placing an adversarial object on top of a host vehicle.
Our experiments demonstrate that successful attacks are primarily caused by easily corrupted image features.
Towards more robust multi-modal perception systems, we show that adversarial training with feature denoising can boost robustness to such attacks significantly.
arXiv Detail & Related papers (2021-01-17T21:15:34Z) - Physically Realizable Adversarial Examples for LiDAR Object Detection [72.0017682322147]
We present a method to generate universal 3D adversarial objects to fool LiDAR detectors.
In particular, we demonstrate that placing an adversarial object on the rooftop of any target vehicle to hide the vehicle entirely from LiDAR detectors with a success rate of 80%.
This is one step closer towards safer self-driving under unseen conditions from limited training data.
arXiv Detail & Related papers (2020-04-01T16:11:04Z) - Firearm Detection and Segmentation Using an Ensemble of Semantic Neural
Networks [62.997667081978825]
We present a weapon detection system based on an ensemble of semantic Convolutional Neural Networks.
A set of simpler neural networks dedicated to specific tasks requires less computational resources and can be trained in parallel.
The overall output of the system given by the aggregation of the outputs of individual networks can be tuned by a user to trade-off false positives and false negatives.
arXiv Detail & Related papers (2020-02-11T13:58:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.