LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models
- URL: http://arxiv.org/abs/2410.09732v1
- Date: Sun, 13 Oct 2024 05:26:36 GMT
- Title: LOKI: A Comprehensive Synthetic Data Detection Benchmark using Large Multimodal Models
- Authors: Junyan Ye, Baichuan Zhou, Zilong Huang, Junan Zhang, Tianyi Bai, Hengrui Kang, Jun He, Honglin Lin, Zihao Wang, Tong Wu, Zhizheng Wu, Yiping Chen, Dahua Lin, Conghui He, Weijia Li,
- Abstract summary: We introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities.
The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks.
We evaluate 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities.
- Score: 55.903148392998965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of AI-generated content, the future internet may be inundated with synthetic data, making the discrimination of authentic and credible multimodal data increasingly challenging. Synthetic data detection has thus garnered widespread attention, and the performance of large multimodal models (LMMs) in this task has attracted significant interest. LMMs can provide natural language explanations for their authenticity judgments, enhancing the explainability of synthetic content detection. Simultaneously, the task of distinguishing between real and synthetic data effectively tests the perception, knowledge, and reasoning capabilities of LMMs. In response, we introduce LOKI, a novel benchmark designed to evaluate the ability of LMMs to detect synthetic data across multiple modalities. LOKI encompasses video, image, 3D, text, and audio modalities, comprising 18K carefully curated questions across 26 subcategories with clear difficulty levels. The benchmark includes coarse-grained judgment and multiple-choice questions, as well as fine-grained anomaly selection and explanation tasks, allowing for a comprehensive analysis of LMMs. We evaluated 22 open-source LMMs and 6 closed-source models on LOKI, highlighting their potential as synthetic data detectors and also revealing some limitations in the development of LMM capabilities. More information about LOKI can be found at https://opendatalab.github.io/LOKI/
Related papers
- HumanEval-V: Evaluating Visual Understanding and Reasoning Abilities of Large Multimodal Models Through Coding Tasks [25.959032350818795]
HumanEval-V is a benchmark designed to evaluate Large Language Models' visual understanding and reasoning capabilities through code generation.
HumanEval-V includes 108 carefully crafted, entry-level Python coding tasks derived from platforms like CodeForces and Stack Overflow.
We evaluate 19 state-of-the-art LMMs using HumanEval-V, uncovering significant challenges.
arXiv Detail & Related papers (2024-10-16T09:04:57Z) - MMSearch: Benchmarking the Potential of Large Models as Multi-modal Search Engines [91.08394877954322]
Large Multimodal Models (LMMs) have made impressive strides in AI search engines.
But, whether they can function as AI search engines remains under-explored.
We first design a delicate pipeline, MMSearch-Engine, to empower any LMMs with multimodal search capabilities.
arXiv Detail & Related papers (2024-09-19T17:59:45Z) - Synthetic Multimodal Question Generation [60.33494376081317]
Multimodal Retrieval Augmented Generation (MMRAG) is a powerful approach to question-answering over multimodal documents.
We propose SMMQG, a synthetic data generation framework that generates question and answer pairs directly from multimodal documents.
We use SMMQG to generate an MMRAG dataset of 1024 questions over Wikipedia documents and evaluate state-of-the-art models using it.
arXiv Detail & Related papers (2024-07-02T12:57:42Z) - F-LMM: Grounding Frozen Large Multimodal Models [53.8059045627934]
We present F-LMM -- grounding frozen off-the-shelf LMMs in human-AI conversations.
Using only a few trainable CNN layers, we can translate word-pixel attention weights to mask logits.
Our F-LMM neither learns special segmentation tokens nor utilises high-quality grounded instruction-tuning data.
arXiv Detail & Related papers (2024-06-09T15:14:26Z) - Exploring the Capabilities of Large Multimodal Models on Dense Text [58.82262549456294]
We propose the DT-VQA dataset, with 170k question-answer pairs.
In this paper, we conduct a comprehensive evaluation of GPT4V, Gemini, and various open-source LMMs.
We find that even with automatically labeled training datasets, significant improvements in model performance can be achieved.
arXiv Detail & Related papers (2024-05-09T07:47:25Z) - MuSR: Testing the Limits of Chain-of-thought with Multistep Soft Reasoning [63.80739044622555]
We introduce MuSR, a dataset for evaluating language models on soft reasoning tasks specified in a natural language narrative.
This dataset has two crucial features. First, it is created through a novel neurosymbolic synthetic-to-natural generation algorithm.
Second, our dataset instances are free text narratives corresponding to real-world domains of reasoning.
arXiv Detail & Related papers (2023-10-24T17:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.