Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense
- URL: http://arxiv.org/abs/2410.09838v2
- Date: Wed, 16 Oct 2024 15:59:19 GMT
- Title: Uncovering, Explaining, and Mitigating the Superficial Safety of Backdoor Defense
- Authors: Rui Min, Zeyu Qin, Nevin L. Zhang, Li Shen, Minhao Cheng,
- Abstract summary: We investigate the Post-Purification Robustness of current backdoor purification methods.
We find that current safety purification methods are vulnerable to the rapid re-learning of backdoor behavior.
We propose a tuning defense, Path-Aware Minimization (PAM), which promotes deviation along backdoor-connected paths with extra model updates.
- Score: 27.471096446155933
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Backdoor attacks pose a significant threat to Deep Neural Networks (DNNs) as they allow attackers to manipulate model predictions with backdoor triggers. To address these security vulnerabilities, various backdoor purification methods have been proposed to purify compromised models. Typically, these purified models exhibit low Attack Success Rates (ASR), rendering them resistant to backdoored inputs. However, Does achieving a low ASR through current safety purification methods truly eliminate learned backdoor features from the pretraining phase? In this paper, we provide an affirmative answer to this question by thoroughly investigating the Post-Purification Robustness of current backdoor purification methods. We find that current safety purification methods are vulnerable to the rapid re-learning of backdoor behavior, even when further fine-tuning of purified models is performed using a very small number of poisoned samples. Based on this, we further propose the practical Query-based Reactivation Attack (QRA) which could effectively reactivate the backdoor by merely querying purified models. We find the failure to achieve satisfactory post-purification robustness stems from the insufficient deviation of purified models from the backdoored model along the backdoor-connected path. To improve the post-purification robustness, we propose a straightforward tuning defense, Path-Aware Minimization (PAM), which promotes deviation along backdoor-connected paths with extra model updates. Extensive experiments demonstrate that PAM significantly improves post-purification robustness while maintaining a good clean accuracy and low ASR. Our work provides a new perspective on understanding the effectiveness of backdoor safety tuning and highlights the importance of faithfully assessing the model's safety.
Related papers
- Efficient Backdoor Defense in Multimodal Contrastive Learning: A Token-Level Unlearning Method for Mitigating Threats [52.94388672185062]
We propose an efficient defense mechanism against backdoor threats using a concept known as machine unlearning.
This entails strategically creating a small set of poisoned samples to aid the model's rapid unlearning of backdoor vulnerabilities.
In the backdoor unlearning process, we present a novel token-based portion unlearning training regime.
arXiv Detail & Related papers (2024-09-29T02:55:38Z) - Diff-Cleanse: Identifying and Mitigating Backdoor Attacks in Diffusion Models [3.134071086568745]
Diffusion models (DMs) are regarded as one of the most advanced generative models today.
Recent studies suggest that DMs are vulnerable to backdoor attacks.
This vulnerability poses substantial risks, including reputational damage to model owners.
We introduce Diff-Cleanse, a novel two-stage backdoor defense framework specifically designed for DMs.
arXiv Detail & Related papers (2024-07-31T03:54:41Z) - BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models [57.5404308854535]
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions.
We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space.
Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations.
arXiv Detail & Related papers (2024-06-24T19:29:47Z) - Unlearning Backdoor Threats: Enhancing Backdoor Defense in Multimodal Contrastive Learning via Local Token Unlearning [49.242828934501986]
Multimodal contrastive learning has emerged as a powerful paradigm for building high-quality features.
backdoor attacks subtly embed malicious behaviors within the model during training.
We introduce an innovative token-based localized forgetting training regime.
arXiv Detail & Related papers (2024-03-24T18:33:15Z) - BadCLIP: Dual-Embedding Guided Backdoor Attack on Multimodal Contrastive
Learning [85.2564206440109]
This paper reveals the threats in this practical scenario that backdoor attacks can remain effective even after defenses.
We introduce the emphtoolns attack, which is resistant to backdoor detection and model fine-tuning defenses.
arXiv Detail & Related papers (2023-11-20T02:21:49Z) - Towards Stable Backdoor Purification through Feature Shift Tuning [22.529990213795216]
Deep neural networks (DNN) are vulnerable to backdoor attacks.
In this paper, we start with fine-tuning, one of the most common and easy-to-deploy backdoor defenses.
We introduce Feature Shift Tuning (FST), a method for tuning-based backdoor purification.
arXiv Detail & Related papers (2023-10-03T08:25:32Z) - Backdoor Defense via Deconfounded Representation Learning [17.28760299048368]
We propose a Causality-inspired Backdoor Defense (CBD) to learn deconfounded representations for reliable classification.
CBD is effective in reducing backdoor threats while maintaining high accuracy in predicting benign samples.
arXiv Detail & Related papers (2023-03-13T02:25:59Z) - Backdoor Defense via Suppressing Model Shortcuts [91.30995749139012]
In this paper, we explore the backdoor mechanism from the angle of the model structure.
We demonstrate that the attack success rate (ASR) decreases significantly when reducing the outputs of some key skip connections.
arXiv Detail & Related papers (2022-11-02T15:39:19Z) - Scalable Backdoor Detection in Neural Networks [61.39635364047679]
Deep learning models are vulnerable to Trojan attacks, where an attacker can install a backdoor during training time to make the resultant model misidentify samples contaminated with a small trigger patch.
We propose a novel trigger reverse-engineering based approach whose computational complexity does not scale with the number of labels, and is based on a measure that is both interpretable and universal across different network and patch types.
In experiments, we observe that our method achieves a perfect score in separating Trojaned models from pure models, which is an improvement over the current state-of-the art method.
arXiv Detail & Related papers (2020-06-10T04:12:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.