論文の概要: HASN: Hybrid Attention Separable Network for Efficient Image Super-resolution
- arxiv url: http://arxiv.org/abs/2410.09844v1
- Date: Sun, 13 Oct 2024 14:00:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 04:32:54.112961
- Title: HASN: Hybrid Attention Separable Network for Efficient Image Super-resolution
- Title(参考訳): HASN:高能率画像超解像のためのハイブリッドアテンション分離ネットワーク
- Authors: Weifeng Cao, Xiaoyan Lei, Jun Shi, Wanyong Liang, Jie Liu, Zongfei Bai,
- Abstract要約: 単一画像の超高解像度化のための軽量な手法は、限られたハードウェアリソースのために優れた性能を達成した。
その結果, 各ブロックの残差接続により, モデルストレージと計算コストが増大することが判明した。
我々は,基本的特徴抽出モジュールとして,奥行き分離可能な畳み込み,完全連結層,アクティベーション関数を用いる。
- 参考スコア(独自算出の注目度): 5.110892180215454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, lightweight methods for single image super-resolution (SISR) have gained significant popularity and achieved impressive performance due to limited hardware resources. These methods demonstrate that adopting residual feature distillation is an effective way to enhance performance. However, we find that using residual connections after each block increases the model's storage and computational cost. Therefore, to simplify the network structure and learn higher-level features and relationships between features, we use depthwise separable convolutions, fully connected layers, and activation functions as the basic feature extraction modules. This significantly reduces computational load and the number of parameters while maintaining strong feature extraction capabilities. To further enhance model performance, we propose the Hybrid Attention Separable Block (HASB), which combines channel attention and spatial attention, thus making use of their complementary advantages. Additionally, we use depthwise separable convolutions instead of standard convolutions, significantly reducing the computational load and the number of parameters while maintaining strong feature extraction capabilities. During the training phase, we also adopt a warm-start retraining strategy to exploit the potential of the model further. Extensive experiments demonstrate the effectiveness of our approach. Our method achieves a smaller model size and reduced computational complexity without compromising performance. Code can be available at https://github.com/nathan66666/HASN.git
- Abstract(参考訳): 近年,シングルイメージ超解像(SISR)の軽量化が注目され,ハードウェアリソースの制限により性能が向上している。
これらの手法は, 残像蒸留の導入が性能向上の有効な方法であることを示す。
しかし,各ブロックの後に残差接続を用いることで,モデルの記憶と計算コストが増大することが判明した。
そこで,ネットワーク構造を単純化し,機能間の高レベルな特徴や関係を学習するために,奥行き分離可能な畳み込み,完全連結層,アクティベーション関数を基本的特徴抽出モジュールとして利用する。
これにより、強力な特徴抽出能力を維持しながら、計算負荷とパラメータの数を大幅に削減できる。
モデル性能をさらに向上するために,チャネルの注意と空間の注意を組み合わせたハイブリッド注意分離ブロック(HASB)を提案する。
さらに、標準的な畳み込みではなく、奥行き分離可能な畳み込みを使い、強力な特徴抽出能力を保ちながら、計算負荷とパラメータ数を大幅に削減する。
トレーニングフェーズでは、モデルの可能性をさらに活用するために、ウォームスタートリトレーニング戦略も採用しています。
大規模な実験は、我々のアプローチの有効性を実証する。
提案手法は, 性能を損なうことなく, モデルサイズを小さくし, 計算複雑性を小さくする。
コードはhttps://github.com/nathan66666/HASN.gitで入手できる。
関連論文リスト
- LeRF: Learning Resampling Function for Adaptive and Efficient Image Interpolation [64.34935748707673]
最近のディープニューラルネットワーク(DNN)は、学習データ前処理を導入することで、パフォーマンスを著しく向上させた。
本稿では,DNNが学習した構造的前提と局所的連続仮定の両方を活かした学習再サンプリング(Learning Resampling, LeRF)を提案する。
LeRFは空間的に異なる再サンプリング関数を入力画像ピクセルに割り当て、ニューラルネットワークを用いてこれらの再サンプリング関数の形状を予測する。
論文 参考訳(メタデータ) (2024-07-13T16:09:45Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - GRAN: Ghost Residual Attention Network for Single Image Super Resolution [44.4178326950426]
本稿では,Ghost Residual Attention Block (GRAB) グループを導入し,標準的な畳み込み操作の欠点を克服する。
Ghost Moduleは、標準の畳み込みを置き換えるために線形操作を採用することで、本質的な機能の基盤となる情報を明らかにすることができる。
ベンチマークデータセットを用いて行った実験は,定性的・定量的に,本手法の優れた性能を示すものである。
論文 参考訳(メタデータ) (2023-02-28T13:26:24Z) - Residual Local Feature Network for Efficient Super-Resolution [20.62809970985125]
本研究では,Residual Local Feature Network (RLFN)を提案する。
主なアイデアは、3つの畳み込みレイヤを局所的な特徴学習に使用して、機能の集約を単純化することだ。
さらに,NTIRE 2022の高効率超解像問題において,第1位を獲得した。
論文 参考訳(メタデータ) (2022-05-16T08:46:34Z) - Hybrid Pixel-Unshuffled Network for Lightweight Image Super-Resolution [64.54162195322246]
畳み込みニューラルネットワーク(CNN)は画像超解像(SR)において大きな成功を収めた
ほとんどのディープCNNベースのSRモデルは、高い性能を得るために大量の計算を処理している。
SRタスクに効率的かつ効果的なダウンサンプリングモジュールを導入することで,HPUN(Hybrid Pixel-Unshuffled Network)を提案する。
論文 参考訳(メタデータ) (2022-03-16T20:10:41Z) - Efficient Non-Local Contrastive Attention for Image Super-Resolution [48.093500219958834]
非局所的注意(NLA)は、自然画像の内在的特徴相関を利用して、単一画像超解法(SISR)に大きな改善をもたらす。
本稿では,長期視覚モデリングを行い,より関連性の高い非局所的特徴を活用するための,効率的な非局所的コントラスト注意(ENLCA)を提案する。
論文 参考訳(メタデータ) (2022-01-11T05:59:09Z) - GhostSR: Learning Ghost Features for Efficient Image Super-Resolution [49.393251361038025]
畳み込みニューラルネットワーク(CNN)に基づく単一の画像スーパーリゾリューション(SISR)システムは、膨大な計算コストを必要としながら派手なパフォーマンスを実現します。
SISRモデルの冗長な特徴(すなわちゴースト特徴)を生成するためにシフト演算を用いることを提案する。
提案モジュールに埋め込まれた非コンパクトかつ軽量なSISRモデルの両方が,ベースラインと同等の性能を発揮することを示す。
論文 参考訳(メタデータ) (2021-01-21T10:09:47Z) - FG-Net: Fast Large-Scale LiDAR Point CloudsUnderstanding Network
Leveraging CorrelatedFeature Mining and Geometric-Aware Modelling [15.059508985699575]
FG-Netは、Voxelizationなしで大規模ポイントクラウドを理解するための一般的なディープラーニングフレームワークです。
相関型特徴マイニングと変形性畳み込みに基づく幾何認識モデルを用いた深層畳み込みニューラルネットワークを提案する。
我々のアプローチは精度と効率の点で最先端のアプローチを上回っている。
論文 参考訳(メタデータ) (2020-12-17T08:20:09Z) - Lightweight Single-Image Super-Resolution Network with Attentive
Auxiliary Feature Learning [73.75457731689858]
本稿では,SISR の注意補助機能 (A$2$F) に基づく計算効率が高く正確なネットワークを構築した。
大規模データセットを用いた実験結果から,提案手法の有効性が示された。
論文 参考訳(メタデータ) (2020-11-13T06:01:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。