A Comparative Study of PDF Parsing Tools Across Diverse Document Categories
- URL: http://arxiv.org/abs/2410.09871v1
- Date: Sun, 13 Oct 2024 15:11:31 GMT
- Title: A Comparative Study of PDF Parsing Tools Across Diverse Document Categories
- Authors: Narayan S. Adhikari, Shradha Agarwal,
- Abstract summary: We compare 10 popular PDF parsing tools across 6 document categories using the DocLayNet dataset.
For text extraction, PyMuPDF and pypdfium generally outperformed others, but all text extractions struggled with Scientific and Patent documents.
In table detection, TATR excelled in the Financial, Patent, Law & Regulations, and Scientific categories.
- Score: 0.0
- License:
- Abstract: PDF is one of the most prominent data formats, making PDF parsing crucial for information extraction and retrieval, particularly with the rise of RAG systems. While various PDF parsing tools exist, their effectiveness across different document types remains understudied, especially beyond academic papers. Our research aims to address this gap by comparing 10 popular PDF parsing tools across 6 document categories using the DocLayNet dataset. These tools include PyPDF, pdfminer.six, PyMuPDF, pdfplumber, pypdfium2, Unstructured, Tabula, Camelot, as well as the deep learning-based tools Nougat and Table Transformer(TATR). We evaluated both text extraction and table detection capabilities. For text extraction, PyMuPDF and pypdfium generally outperformed others, but all parsers struggled with Scientific and Patent documents. For these challenging categories, learning-based tools like Nougat demonstrated superior performance. In table detection, TATR excelled in the Financial, Patent, Law & Regulations, and Scientific categories. Table detection tool Camelot performed best for tender documents, while PyMuPDF performed superior in the Manual category. Our findings highlight the importance of selecting appropriate parsing tools based on document type and specific tasks, providing valuable insights for researchers and practitioners working with diverse document sources.
Related papers
- PDF-WuKong: A Large Multimodal Model for Efficient Long PDF Reading with End-to-End Sparse Sampling [63.93112754821312]
Document understanding is a challenging task to process and comprehend large amounts of textual and visual information.
Recent advances in Large Language Models (LLMs) have significantly improved the performance of this task.
We introduce PDF-WuKong, a multimodal large language model (MLLM) which is designed to enhance multimodal question-answering (QA) for long PDF documents.
arXiv Detail & Related papers (2024-10-08T12:17:42Z) - PdfTable: A Unified Toolkit for Deep Learning-Based Table Extraction [0.0]
Extracting information from documents presents formidable challenges due to diverse table styles, complex forms, and the inclusion of different languages.
Camelot and pdfnumber can solely extract tables from digital PDFs.
PP-OCRV2 can comprehensively extract image-based PDFs and tables from pictures.
arXiv Detail & Related papers (2024-09-08T15:08:51Z) - DocGenome: An Open Large-scale Scientific Document Benchmark for Training and Testing Multi-modal Large Language Models [63.466265039007816]
We present DocGenome, a structured document benchmark constructed by annotating 500K scientific documents from 153 disciplines in the arXiv open-access community.
We conduct extensive experiments to demonstrate the advantages of DocGenome and objectively evaluate the performance of large models on our benchmark.
arXiv Detail & Related papers (2024-06-17T15:13:52Z) - DOCMASTER: A Unified Platform for Annotation, Training, & Inference in Document Question-Answering [36.40110520952274]
This paper introduces a unified platform designed for annotating PDF documents, model training, and inference, tailored to document question-answering.
The annotation interface enables users to input questions and highlight text spans within the PDF file as answers, saving layout information and text spans accordingly.
The platform has been instrumental in driving several research prototypes concerning document analysis such as the AI assistant utilized by University of California San Diego's (UCSD) International Services and Engagement Office (ISEO) for processing a substantial volume of PDF documents.
arXiv Detail & Related papers (2024-03-30T18:11:39Z) - PDFTriage: Question Answering over Long, Structured Documents [60.96667912964659]
Representing structured documents as plain text is incongruous with the user's mental model of these documents with rich structure.
We propose PDFTriage that enables models to retrieve the context based on either structure or content.
Our benchmark dataset consists of 900+ human-generated questions over 80 structured documents.
arXiv Detail & Related papers (2023-09-16T04:29:05Z) - CCpdf: Building a High Quality Corpus for Visually Rich Documents from
Web Crawl Data [2.7843134136364265]
This paper proposes an efficient pipeline for creating a big-scale, diverse, multilingual corpus of PDF files from all over the Internet using Common Crawl.
We also share a CCpdf corpus in a form or an index of PDF files along with a script for downloading them, which produces a collection useful for language model pretraining.
arXiv Detail & Related papers (2023-04-28T16:12:18Z) - Graph Neural Networks and Representation Embedding for Table Extraction
in PDF Documents [1.1859913430860336]
The main contribution of this work is to tackle the problem of table extraction, exploiting Graph Neural Networks.
We experimentally evaluated the proposed approach on a new dataset obtained by merging the information provided in the PubLayNet and PubTables-1M datasets.
arXiv Detail & Related papers (2022-08-23T21:36:01Z) - Multi-Type-TD-TSR -- Extracting Tables from Document Images using a
Multi-stage Pipeline for Table Detection and Table Structure Recognition:
from OCR to Structured Table Representations [63.98463053292982]
The recognition of tables consists of two main tasks, namely table detection and table structure recognition.
Recent work shows a clear trend towards deep learning approaches coupled with the use of transfer learning for the task of table structure recognition.
We present a multistage pipeline named Multi-Type-TD-TSR, which offers an end-to-end solution for the problem of table recognition.
arXiv Detail & Related papers (2021-05-23T21:17:18Z) - DocBank: A Benchmark Dataset for Document Layout Analysis [114.81155155508083]
We present textbfDocBank, a benchmark dataset that contains 500K document pages with fine-grained token-level annotations for document layout analysis.
Experiment results show that models trained on DocBank accurately recognize the layout information for a variety of documents.
arXiv Detail & Related papers (2020-06-01T16:04:30Z) - SPECTER: Document-level Representation Learning using Citation-informed
Transformers [51.048515757909215]
SPECTER generates document-level embedding of scientific documents based on pretraining a Transformer language model.
We introduce SciDocs, a new evaluation benchmark consisting of seven document-level tasks ranging from citation prediction to document classification and recommendation.
arXiv Detail & Related papers (2020-04-15T16:05:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.