論文の概要: UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation
- arxiv url: http://arxiv.org/abs/2410.09909v1
- Date: Sun, 13 Oct 2024 16:34:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 04:13:22.704257
- Title: UnSeg: One Universal Unlearnable Example Generator is Enough against All Image Segmentation
- Title(参考訳): UnSeg:1つのUniversal Unlearnableサンプルジェネレータが全画像セグメンテーションに反対
- Authors: Ye Sun, Hao Zhang, Tiehua Zhang, Xingjun Ma, Yu-Gang Jiang,
- Abstract要約: 未承認のプライベートデータ上での大規模なイメージセグメンテーションモデルのトレーニングに関して、プライバシーに関する懸念が高まっている。
我々は、学習不可能な例の概念を利用して、学習不可能なノイズを原画像に生成し、付加することにより、モデルトレーニングに使用不能な画像を作成する。
6つのメインストリームイメージセグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証する。
- 参考スコア(独自算出の注目度): 64.01742988773745
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image segmentation is a crucial vision task that groups pixels within an image into semantically meaningful segments, which is pivotal in obtaining a fine-grained understanding of real-world scenes. However, an increasing privacy concern exists regarding training large-scale image segmentation models on unauthorized private data. In this work, we exploit the concept of unlearnable examples to make images unusable to model training by generating and adding unlearnable noise into the original images. Particularly, we propose a novel Unlearnable Segmentation (UnSeg) framework to train a universal unlearnable noise generator that is capable of transforming any downstream images into their unlearnable version. The unlearnable noise generator is finetuned from the Segment Anything Model (SAM) via bilevel optimization on an interactive segmentation dataset towards minimizing the training error of a surrogate model that shares the same architecture with SAM but is trained from scratch. We empirically verify the effectiveness of UnSeg across 6 mainstream image segmentation tasks, 10 widely used datasets, and 7 different network architectures, and show that the unlearnable images can reduce the segmentation performance by a large margin. Our work provides useful insights into how to leverage foundation models in a data-efficient and computationally affordable manner to protect images against image segmentation models.
- Abstract(参考訳): 画像のセグメンテーションは、画像内のピクセルを意味的に意味のあるセグメンテーションに分類する重要なビジョンタスクである。
しかし、未承認のプライベートデータ上で大規模な画像セグメンテーションモデルをトレーニングすることに関して、プライバシーに関する懸念が高まっている。
本研究では、学習不可能なサンプルの概念を利用して、学習不可能なノイズを原画像に生成・付加することにより、モデルトレーニングに使用不能な画像を作成する。
特に、下流の画像を再生不能なバージョンに変換することができる普遍的非学習可能ノイズ発生装置を訓練するための新しいUnlearnable Segmentation(UnSeg)フレームワークを提案する。
学習不能なノイズ発生装置は、SAMと同一のアーキテクチャを共有するが、スクラッチから訓練される代理モデルのトレーニングエラーを最小限に抑えるために、対話的セグメンテーションデータセットのバイレベル最適化を通じて、SAM(Segment Anything Model)から微調整される。
6つの主流画像セグメンテーションタスク、10つの広く使われているデータセット、7つの異なるネットワークアーキテクチャでUnSegの有効性を実証的に検証し、未学習画像が大きなマージンでセグメンテーション性能を低下させることができることを示す。
我々の研究は、画像セグメント化モデルから画像を保護するために、基礎モデルをデータ効率が高く、計算に手頃な方法で活用する方法に関する有用な洞察を提供する。
関連論文リスト
- Learning to Annotate Part Segmentation with Gradient Matching [58.100715754135685]
本稿では,事前学習したGANを用いて,高品質な画像を生成することで,半教師付き部分分割タスクに対処することに焦点を当てる。
特に、アノテータ学習を学習から学習までの問題として定式化する。
提案手法は,実画像,生成された画像,さらには解析的に描画された画像を含む,幅広いラベル付き画像からアノテータを学習可能であることを示す。
論文 参考訳(メタデータ) (2022-11-06T01:29:22Z) - A Generalist Framework for Panoptic Segmentation of Images and Videos [61.61453194912186]
我々は,タスクの帰納バイアスに頼ることなく,離散的なデータ生成問題としてパノプティクスセグメンテーションを定式化する。
単純な構造と一般的な損失関数を持つパノスコープマスクをモデル化するための拡散モデルを提案する。
本手法は,動画を(ストリーミング環境で)モデル化し,オブジェクトのインスタンスを自動的に追跡することを学ぶ。
論文 参考訳(メタデータ) (2022-10-12T16:18:25Z) - Distilling Ensemble of Explanations for Weakly-Supervised Pre-Training
of Image Segmentation Models [54.49581189337848]
本稿では,分類データセットに基づく画像分割モデルのエンドツーエンド事前学習を可能にする手法を提案する。
提案手法は重み付きセグメンテーション学習法を利用して,重み付きセグメンテーションネットワークを事前訓練する。
実験の結果,ImageNetにソースデータセットとしてPSSLを伴って提案されたエンドツーエンドの事前トレーニング戦略が,さまざまなセグメンテーションモデルの性能向上に成功していることがわかった。
論文 参考訳(メタデータ) (2022-07-04T13:02:32Z) - Self-Supervised Generative Style Transfer for One-Shot Medical Image
Segmentation [10.634870214944055]
医用画像のセグメンテーションにおいて、教師付きディープネットワークの成功は、豊富なラベル付きデータを必要とするコストが伴う。
本稿では,ボリューム画像分割ペアを合成可能なデータ拡張のための,新しいボリューム自己教師型学習法を提案する。
我々の研究の中心的信条は、ワンショット生成学習と自己指導型学習戦略の併用による恩恵を受けている。
論文 参考訳(メタデータ) (2021-10-05T15:28:42Z) - Half-Real Half-Fake Distillation for Class-Incremental Semantic
Segmentation [84.1985497426083]
畳み込みニューラルネットワークは漸進的な学習に不適である。
新しいクラスは利用できるが、初期トレーニングデータは保持されない。
訓練されたセグメンテーションネットワークを「反転」して、ランダムノイズから始まる入力画像の合成を試みる。
論文 参考訳(メタデータ) (2021-04-02T03:47:16Z) - Unsupervised Image Segmentation using Mutual Mean-Teaching [12.784209596867495]
より安定した結果を得るために,Mutual Mean-Teaching (MMT) フレームワークに基づく教師なし画像分割モデルを提案する。
実験結果から,提案モデルでは様々な画像の分割が可能であり,既存の手法よりも優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2020-12-16T13:13:34Z) - Group-Wise Semantic Mining for Weakly Supervised Semantic Segmentation [49.90178055521207]
この研究は、画像レベルのアノテーションとピクセルレベルのセグメンテーションのギャップを埋めることを目標に、弱い監督されたセマンティックセグメンテーション(WSSS)に対処する。
画像群における意味的依存関係を明示的にモデル化し,より信頼性の高い擬似的基盤構造を推定する,新たなグループ学習タスクとしてWSSSを定式化する。
特に、入力画像がグラフノードとして表現されるグループ単位のセマンティックマイニングのためのグラフニューラルネットワーク(GNN)を考案する。
論文 参考訳(メタデータ) (2020-12-09T12:40:13Z) - Importance of Self-Consistency in Active Learning for Semantic
Segmentation [31.392212891018655]
我々は,少数のラベル付きデータにのみアクセス可能なデータ駆動モデルの性能を向上させるために,自己整合性は自己超越の強力な情報源となることを示す。
提案するアクティブラーニングフレームワークでは,ラベル付けが必要な小さな画像パッチを反復的に抽出する。
現在のモデルが最も分類に苦労しているイメージパッチを見つけることができます。
論文 参考訳(メタデータ) (2020-08-04T22:18:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。