The Roles of Contextual Semantic Relevance Metrics in Human Visual Processing
- URL: http://arxiv.org/abs/2410.09921v1
- Date: Sun, 13 Oct 2024 17:05:47 GMT
- Title: The Roles of Contextual Semantic Relevance Metrics in Human Visual Processing
- Authors: Kun Sun, Rong Wang,
- Abstract summary: This study introduces the metrics of contextual semantic relevance.
We evaluate semantic relationships between target objects and their surroundings from both vision-based and language-based perspectives.
We employ state-of-the-art deep learning techniques to compute these metrics and analyze their impacts on fixation measures on human visual processing.
- Score: 27.152245569974678
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Semantic relevance metrics can capture both the inherent semantics of individual objects and their relationships to other elements within a visual scene. Numerous previous research has demonstrated that these metrics can influence human visual processing. However, these studies often did not fully account for contextual information or employ the recent deep learning models for more accurate computation. This study investigates human visual perception and processing by introducing the metrics of contextual semantic relevance. We evaluate semantic relationships between target objects and their surroundings from both vision-based and language-based perspectives. Testing a large eye-movement dataset from visual comprehension, we employ state-of-the-art deep learning techniques to compute these metrics and analyze their impacts on fixation measures on human visual processing through advanced statistical models. These metrics could also simulate top-down and bottom-up processing in visual perception. This study further integrates vision-based and language-based metrics into a novel combined metric, addressing a critical gap in previous research that often treated visual and semantic similarities separately. Results indicate that all metrics could precisely predict fixation measures in visual perception and processing, but with distinct roles in prediction. The combined metric outperforms other metrics, supporting theories that emphasize the interaction between semantic and visual information in shaping visual perception/processing. This finding aligns with growing recognition of the importance of multi-modal information processing in human cognition. These insights enhance our understanding of cognitive mechanisms underlying visual processing and have implications for developing more accurate computational models in fields such as cognitive science and human-computer interaction.
Related papers
- When Does Perceptual Alignment Benefit Vision Representations? [76.32336818860965]
We investigate how aligning vision model representations to human perceptual judgments impacts their usability.
We find that aligning models to perceptual judgments yields representations that improve upon the original backbones across many downstream tasks.
Our results suggest that injecting an inductive bias about human perceptual knowledge into vision models can contribute to better representations.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - Attention-aware semantic relevance predicting Chinese sentence reading [6.294658916880712]
This study proposes an attention-aware'' approach for computing contextual semantic relevance.
The attention-aware metrics of semantic relevance can more accurately predict fixation durations in Chinese reading tasks.
Our approach underscores the potential of these metrics to advance our comprehension of how humans understand and process language.
arXiv Detail & Related papers (2024-03-27T13:22:38Z) - Revisiting Self-supervised Learning of Speech Representation from a
Mutual Information Perspective [68.20531518525273]
We take a closer look into existing self-supervised methods of speech from an information-theoretic perspective.
We use linear probes to estimate the mutual information between the target information and learned representations.
We explore the potential of evaluating representations in a self-supervised fashion, where we estimate the mutual information between different parts of the data without using any labels.
arXiv Detail & Related papers (2024-01-16T21:13:22Z) - Visual Referential Games Further the Emergence of Disentangled
Representations [0.12891210250935145]
This paper investigates how do compositionality at the level of emerging languages, disentanglement at the level of the learned representations, and systematicity relate to each other in the context of visual referential games.
arXiv Detail & Related papers (2023-04-27T20:00:51Z) - Localization vs. Semantics: Visual Representations in Unimodal and
Multimodal Models [57.08925810659545]
We conduct a comparative analysis of the visual representations in existing vision-and-language models and vision-only models.
Our empirical observations suggest that vision-and-language models are better at label prediction tasks.
We hope our study sheds light on the role of language in visual learning, and serves as an empirical guide for various pretrained models.
arXiv Detail & Related papers (2022-12-01T05:00:18Z) - Perceptual Grouping in Contrastive Vision-Language Models [59.1542019031645]
We show how vision-language models are able to understand where objects reside within an image and group together visually related parts of the imagery.
We propose a minimal set of modifications that results in models that uniquely learn both semantic and spatial information.
arXiv Detail & Related papers (2022-10-18T17:01:35Z) - Visualizing and Understanding Contrastive Learning [22.553990823550784]
We design visual explanation methods that contribute towards understanding similarity learning tasks from pairs of images.
We also adapt existing metrics, used to evaluate visual explanations of image classification systems, to suit pairs of explanations.
arXiv Detail & Related papers (2022-06-20T13:01:46Z) - Learnable Visual Words for Interpretable Image Recognition [70.85686267987744]
We propose the Learnable Visual Words (LVW) to interpret the model prediction behaviors with two novel modules.
The semantic visual words learning relaxes the category-specific constraint, enabling the general visual words shared across different categories.
Our experiments on six visual benchmarks demonstrate the superior effectiveness of our proposed LVW in both accuracy and model interpretation.
arXiv Detail & Related papers (2022-05-22T03:24:45Z) - Efficient Multi-Modal Embeddings from Structured Data [0.0]
Multi-modal word semantics aims to enhance embeddings with perceptual input.
Visual grounding can contribute to linguistic applications as well.
New embedding conveys complementary information for text based embeddings.
arXiv Detail & Related papers (2021-10-06T08:42:09Z) - What Can You Learn from Your Muscles? Learning Visual Representation
from Human Interactions [50.435861435121915]
We use human interaction and attention cues to investigate whether we can learn better representations compared to visual-only representations.
Our experiments show that our "muscly-supervised" representation outperforms a visual-only state-of-the-art method MoCo.
arXiv Detail & Related papers (2020-10-16T17:46:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.