論文の概要: Efficient Federated Unlearning under Plausible Deniability
- arxiv url: http://arxiv.org/abs/2410.09947v1
- Date: Sun, 13 Oct 2024 18:08:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 04:03:30.879671
- Title: Efficient Federated Unlearning under Plausible Deniability
- Title(参考訳): 可塑性認知下での効果的なフェデレーション・アンラーニング
- Authors: Ayush K. Varshney, Vicenç Torra,
- Abstract要約: 機械学習は、特定のデータポイントが重みに与える影響を忘れるため、MLパラメータを変更することでこの問題に対処する。
最近の文献では、データポイント(s)からのコントリビューションが、確率が1に近いデータセット内の他のデータポイントで鍛えられることが強調されている。
本稿では、FLサーバがクライアントの参加を確実に否定できるプライバシーモデルを用いて、フェデレートされたアンラーニングを実現する効率的な方法を提案する。
- 参考スコア(独自算出の注目度): 1.795561427808824
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Privacy regulations like the GDPR in Europe and the CCPA in the US allow users the right to remove their data ML applications. Machine unlearning addresses this by modifying the ML parameters in order to forget the influence of a specific data point on its weights. Recent literature has highlighted that the contribution from data point(s) can be forged with some other data points in the dataset with probability close to one. This allows a server to falsely claim unlearning without actually modifying the model's parameters. However, in distributed paradigms such as FL, where the server lacks access to the dataset and the number of clients are limited, claiming unlearning in such cases becomes a challenge. This paper introduces an efficient way to achieve federated unlearning, by employing a privacy model which allows the FL server to plausibly deny the client's participation in the training up to a certain extent. We demonstrate that the server can generate a Proof-of-Deniability, where each aggregated update can be associated with at least x number of client updates. This enables the server to plausibly deny a client's participation. However, in the event of frequent unlearning requests, the server is required to adopt an unlearning strategy and, accordingly, update its model parameters. We also perturb the client updates in a cluster in order to avoid inference from an honest but curious server. We show that the global model satisfies differential privacy after T number of communication rounds. The proposed methodology has been evaluated on multiple datasets in different privacy settings. The experimental results show that our framework achieves comparable utility while providing a significant reduction in terms of memory (30 times), as well as retraining time (1.6-500769 times). The source code for the paper is available.
- Abstract(参考訳): 欧州のGDPRや米国のCCPAのようなプライバシー規制により、ユーザはデータMLアプリケーションを削除できる。
機械学習は、特定のデータポイントが重みに与える影響を忘れるため、MLパラメータを変更することでこの問題に対処する。
最近の文献では、データポイント(s)からのコントリビューションが、確率が1に近いデータセット内の他のデータポイントで鍛えられることが強調されている。
これにより、モデルパラメータを実際に変更することなく、サーバは誤ってアンラーニングを主張できる。
しかし、FLのような分散パラダイムでは、サーバーがデータセットにアクセスできず、クライアントの数も限られており、そのような場合の未学習は課題となる。
本稿では、FLサーバがクライアントのトレーニングへの参加をある程度否定できるプライバシーモデルを用いて、フェデレートされたアンラーニングを実現する効率的な方法を提案する。
サーバがProof-of-Deniabilityを生成し、各集約された更新を少なくともx個のクライアント更新に関連付けることができることを示す。
これにより、サーバはクライアントの参加を確実に否定することができる。
しかし、頻繁なアンラーニング要求の場合、サーバはアンラーニング戦略を採用し、従ってモデルパラメータを更新する必要がある。
また、正直だが好奇心の強いサーバからの推論を避けるために、クラスタ内のクライアント更新も妨害します。
我々は,グローバルモデルがTラウンド後の差分プライバシを満たすことを示す。
提案手法はプライバシー設定の異なる複数のデータセットで評価されている。
実験結果から,本フレームワークはメモリ容量の大幅な削減(30倍)と再トレーニング時間(1.6~500769倍)を実現していることがわかった。
論文のソースコードは公開されている。
関連論文リスト
- Personalized federated learning based on feature fusion [2.943623084019036]
フェデレートされた学習により、分散クライアントは、クライアントのプライバシを保護するためにデータをローカルに保存しながら、トレーニングで協力することができる。
pFedPMと呼ばれる個人化学習手法を提案する。
このプロセスでは、従来のグラデーションアップロードを機能アップロードに置き換え、通信コストを削減し、異種クライアントモデルを可能にする。
論文 参考訳(メタデータ) (2024-06-24T12:16:51Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
フェデレートアンラーニング(Federated Unlearning)は、分散クライアントのデータオーナシップを保護するための、有望なパラダイムである。
既存の作業では、分散クライアントからの履歴モデルパラメータを保持するために、中央サーバが必要である。
本稿では,ブロックチェーンによる信頼性の高いフェデレーションアンラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2024-01-29T07:04:48Z) - Don't Memorize; Mimic The Past: Federated Class Incremental Learning
Without Episodic Memory [36.4406505365313]
本稿では,過去のデータの一部を格納するのではなく,生成モデルを用いて過去の分布からサンプルを合成する,連邦化クラスインクリメンタルラーニングのためのフレームワークを提案する。
生成モデルは、クライアントからデータを要求することなく、各タスクの最後にデータフリーのメソッドを使用してサーバ上でトレーニングされる。
論文 参考訳(メタデータ) (2023-07-02T07:06:45Z) - Federated Few-shot Learning [40.08636228692432]
フェデレートラーニング(FL)は、複数のクライアントが独自のローカルデータを交換することなく、機械学習モデルを共同で学習することを可能にする。
実際には、特定のクライアントは限られた数のサンプル(例:数発のサンプル)のみを含むことができる。
本稿では、2つの個別に更新されたモデルと専用のトレーニング戦略を備えた、新しいフェデレーション付き数ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2023-06-17T02:25:56Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
フェデレートラーニングは、さまざまな参加者の間で共通のモデルを協調的に訓練するための、広く使われているパラダイムとなっている。
多くの攻撃は、メンバーシップ、資産、または参加者データの完全な再構築のような機密情報を推測することは依然として可能であることを示した。
単純な線形モデルでは、集約されたモデル更新からクライアント固有のプロパティを効果的にキャプチャできることが示される。
論文 参考訳(メタデータ) (2023-03-07T14:11:01Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
フェデレートラーニング(FL)とスプリットラーニング(SL)は、データを(デバイス上で)プライベートにしながら協調学習を可能にする2つのフレームワークである。
FLでは、各データ保持者がモデルをローカルにトレーニングし、集約のために中央サーバにリリースする。
SLでは、クライアントは個々のカット層アクティベーション(スマッシュされたデータ)をサーバにリリースし、そのレスポンス(推論とバックの伝搬の両方)を待つ必要があります。
本研究では, クライアントがオンライン知識蒸留を通じて, 対照的な損失を生かして協調する, プライバシ保護機械学習の新しいアプローチを提案する。
論文 参考訳(メタデータ) (2022-11-20T10:49:22Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
非イド分散データに対する局所訓練は、偏向局所最適化をもたらす。
自然な解決策は、サーバがデータ分散全体のグローバルなビューを持つように、すべてのクライアントデータをサーバに収集することです。
本稿では,データプライバシを損なうことなく,サーバ上でのグローバルな知識の収集と活用を図る。
論文 参考訳(メタデータ) (2022-11-20T06:13:06Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
クライアント間の非IIDデータ分散と中毒攻撃は、現実世界のフェデレーション学習システムにおける2つの大きな課題である。
サーバ側集約プロセスを最適化する汎用的なアプローチであるSmartFLを提案する。
本稿では,SmartFLの収束と一般化能力に関する理論的解析を行う。
論文 参考訳(メタデータ) (2022-11-10T13:20:56Z) - Federated learning with incremental clustering for heterogeneous data [0.0]
以前のアプローチでは、クライアントをクラスタ化するには、サーバはクライアントにパラメータを同時に送信する必要がある。
本稿では,FLIC(Federated Learning with Incremental Clustering)を提案する。
我々は,この手法がクライアントを同じデータ分布に従うグループに分割することに成功していることを実証的に示す。
論文 参考訳(メタデータ) (2022-06-17T13:13:03Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。