Efficient Federated Unlearning under Plausible Deniability
- URL: http://arxiv.org/abs/2410.09947v1
- Date: Sun, 13 Oct 2024 18:08:24 GMT
- Title: Efficient Federated Unlearning under Plausible Deniability
- Authors: Ayush K. Varshney, Vicenç Torra,
- Abstract summary: Machine unlearning addresses this by modifying the ML parameters in order to forget the influence of a specific data point on its weights.
Recent literature has highlighted that the contribution from data point(s) can be forged with some other data points in the dataset with probability close to one.
This paper introduces an efficient way to achieve federated unlearning, by employing a privacy model which allows the FL server to plausibly deny the client's participation.
- Score: 1.795561427808824
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Privacy regulations like the GDPR in Europe and the CCPA in the US allow users the right to remove their data ML applications. Machine unlearning addresses this by modifying the ML parameters in order to forget the influence of a specific data point on its weights. Recent literature has highlighted that the contribution from data point(s) can be forged with some other data points in the dataset with probability close to one. This allows a server to falsely claim unlearning without actually modifying the model's parameters. However, in distributed paradigms such as FL, where the server lacks access to the dataset and the number of clients are limited, claiming unlearning in such cases becomes a challenge. This paper introduces an efficient way to achieve federated unlearning, by employing a privacy model which allows the FL server to plausibly deny the client's participation in the training up to a certain extent. We demonstrate that the server can generate a Proof-of-Deniability, where each aggregated update can be associated with at least x number of client updates. This enables the server to plausibly deny a client's participation. However, in the event of frequent unlearning requests, the server is required to adopt an unlearning strategy and, accordingly, update its model parameters. We also perturb the client updates in a cluster in order to avoid inference from an honest but curious server. We show that the global model satisfies differential privacy after T number of communication rounds. The proposed methodology has been evaluated on multiple datasets in different privacy settings. The experimental results show that our framework achieves comparable utility while providing a significant reduction in terms of memory (30 times), as well as retraining time (1.6-500769 times). The source code for the paper is available.
Related papers
- Personalized federated learning based on feature fusion [2.943623084019036]
Federated learning enables distributed clients to collaborate on training while storing their data locally to protect client privacy.
We propose a personalized federated learning approach called pFedPM.
In our process, we replace traditional gradient uploading with feature uploading, which helps reduce communication costs and allows for heterogeneous client models.
arXiv Detail & Related papers (2024-06-24T12:16:51Z) - Blockchain-enabled Trustworthy Federated Unlearning [50.01101423318312]
Federated unlearning is a promising paradigm for protecting the data ownership of distributed clients.
Existing works require central servers to retain the historical model parameters from distributed clients.
This paper proposes a new blockchain-enabled trustworthy federated unlearning framework.
arXiv Detail & Related papers (2024-01-29T07:04:48Z) - Don't Memorize; Mimic The Past: Federated Class Incremental Learning
Without Episodic Memory [36.4406505365313]
This paper presents a framework for federated class incremental learning that utilizes a generative model to synthesize samples from past distributions instead of storing part of past data.
The generative model is trained on the server using data-free methods at the end of each task without requesting data from clients.
arXiv Detail & Related papers (2023-07-02T07:06:45Z) - Federated Few-shot Learning [40.08636228692432]
Federated Learning (FL) enables multiple clients to collaboratively learn a machine learning model without exchanging their own local data.
In practice, certain clients may only contain a limited number of samples (i.e., few-shot samples)
We propose a novel federated few-shot learning framework with two separately updated models and dedicated training strategies.
arXiv Detail & Related papers (2023-06-17T02:25:56Z) - Client-specific Property Inference against Secure Aggregation in
Federated Learning [52.8564467292226]
Federated learning has become a widely used paradigm for collaboratively training a common model among different participants.
Many attacks have shown that it is still possible to infer sensitive information such as membership, property, or outright reconstruction of participant data.
We show that simple linear models can effectively capture client-specific properties only from the aggregated model updates.
arXiv Detail & Related papers (2023-03-07T14:11:01Z) - Scalable Collaborative Learning via Representation Sharing [53.047460465980144]
Federated learning (FL) and Split Learning (SL) are two frameworks that enable collaborative learning while keeping the data private (on device)
In FL, each data holder trains a model locally and releases it to a central server for aggregation.
In SL, the clients must release individual cut-layer activations (smashed data) to the server and wait for its response (during both inference and back propagation).
In this work, we present a novel approach for privacy-preserving machine learning, where the clients collaborate via online knowledge distillation using a contrastive loss.
arXiv Detail & Related papers (2022-11-20T10:49:22Z) - DYNAFED: Tackling Client Data Heterogeneity with Global Dynamics [60.60173139258481]
Local training on non-iid distributed data results in deflected local optimum.
A natural solution is to gather all client data onto the server, such that the server has a global view of the entire data distribution.
In this paper, we put forth an idea to collect and leverage global knowledge on the server without hindering data privacy.
arXiv Detail & Related papers (2022-11-20T06:13:06Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems.
We propose SmartFL, a generic approach that optimize the server-side aggregation process.
We provide theoretical analyses of the convergence and generalization capacity for SmartFL.
arXiv Detail & Related papers (2022-11-10T13:20:56Z) - Federated learning with incremental clustering for heterogeneous data [0.0]
In previous approaches, in order to cluster clients the server requires clients to send their parameters simultaneously.
We propose FLIC (Federated Learning with Incremental Clustering) in which the server exploits the updates sent by clients during federated training instead of asking them to send their parameters simultaneously.
We empirically demonstrate for various non-IID cases that our approach successfully splits clients into groups following the same data distributions.
arXiv Detail & Related papers (2022-06-17T13:13:03Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.