LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models
- URL: http://arxiv.org/abs/2410.09962v2
- Date: Tue, 15 Oct 2024 16:10:26 GMT
- Title: LongHalQA: Long-Context Hallucination Evaluation for MultiModal Large Language Models
- Authors: Han Qiu, Jiaxing Huang, Peng Gao, Qin Qi, Xiaoqin Zhang, Ling Shao, Shijian Lu,
- Abstract summary: LongHalQA is an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text.
LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios.
- Score: 96.64960606650115
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hallucination, a phenomenon where multimodal large language models~(MLLMs) tend to generate textual responses that are plausible but unaligned with the image, has become one major hurdle in various MLLM-related applications. Several benchmarks have been created to gauge the hallucination levels of MLLMs, by either raising discriminative questions about the existence of objects or introducing LLM evaluators to score the generated text from MLLMs. However, the discriminative data largely involve simple questions that are not aligned with real-world text, while the generative data involve LLM evaluators that are computationally intensive and unstable due to their inherent randomness. We propose LongHalQA, an LLM-free hallucination benchmark that comprises 6K long and complex hallucination text. LongHalQA is featured by GPT4V-generated hallucinatory data that are well aligned with real-world scenarios, including object/image descriptions and multi-round conversations with 14/130 words and 189 words, respectively, on average. It introduces two new tasks, hallucination discrimination and hallucination completion, unifying both discriminative and generative evaluations in a single multiple-choice-question form and leading to more reliable and efficient evaluations without the need for LLM evaluators. Further, we propose an advanced pipeline that greatly facilitates the construction of future hallucination benchmarks with long and complex questions and descriptions. Extensive experiments over multiple recent MLLMs reveal various new challenges when they are handling hallucinations with long and complex textual data. Dataset and evaluation code are available at https://github.com/hanqiu-hq/LongHalQA.
Related papers
- From Single to Multi: How LLMs Hallucinate in Multi-Document Summarization [6.37435726278524]
We investigate how hallucinations manifest in large language models (LLMs) when summarizing topic-specific information from multiple documents.
On average, up to 75% of the content in LLM-generated summary is hallucinated, with hallucinations more likely to occur towards the end of the summaries.
To understand the characteristics of these hallucinations, we manually evaluate 700+ insights and find that most errors stem from either failing to follow instructions or producing overly generic insights.
arXiv Detail & Related papers (2024-10-17T18:38:53Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
Large Language Models (LLMs) have gained widespread adoption in various natural language processing tasks.
They generate unfaithful or inconsistent content that deviates from the input source, leading to severe consequences.
We propose a robust discriminator named RelD to effectively detect hallucination in LLMs' generated answers.
arXiv Detail & Related papers (2024-07-04T18:47:42Z) - DiaHalu: A Dialogue-level Hallucination Evaluation Benchmark for Large Language Models [26.289847386286446]
We propose DiaHalu, the first dialogue-level hallucination evaluation benchmark to our knowledge.
We integrate the collected topics into system prompts and facilitate a dialogue between two ChatGPT3.5.
We manually modify the contents that do not adhere to human language conventions and then have LLMs re-generate, simulating authentic human-machine interaction scenarios.
arXiv Detail & Related papers (2024-03-01T15:38:55Z) - Context-aware Decoding Reduces Hallucination in Query-focused
Summarization [2.8554857235549753]
We conduct a large-scale study on one recently proposed decoding method -- Context-aware Decoding (CAD)
Experiments with eight different language models show that performance-wise, CAD improves QFS quality by reducing factuality errors/hallucinations.
The code implementation based on Huggingface Library is made available.
arXiv Detail & Related papers (2023-12-21T23:42:13Z) - Hallucination Augmented Contrastive Learning for Multimodal Large
Language Model [53.65682783591723]
Multi-modal large language models (MLLMs) have been shown to efficiently integrate natural language with visual information to handle multi-modal tasks.
However, MLLMs still face a fundamental limitation of hallucinations, where they tend to generate erroneous or fabricated information.
In this paper, we address hallucinations in MLLMs from a novel perspective of representation learning.
arXiv Detail & Related papers (2023-12-12T04:05:15Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
Multimodal large language models (MLLMs) have recently demonstrated exceptional capabilities in generating not only texts but also images given interleaved multimodal inputs.
SEED-Bench-2 comprises 24K multiple-choice questions with accurate human annotations, which spans 27 dimensions.
We evaluate the performance of 23 prominent open-source MLLMs and summarize valuable observations.
arXiv Detail & Related papers (2023-11-28T05:53:55Z) - AMBER: An LLM-free Multi-dimensional Benchmark for MLLMs Hallucination
Evaluation [58.19101663976327]
Multi-modal Large Language Models (MLLMs) encounter the significant challenge of hallucinations.
evaluating MLLMs' hallucinations is becoming increasingly important in model improvement and practical application deployment.
We propose an LLM-free multi-dimensional benchmark AMBER, which can be used to evaluate both generative task and discriminative task.
arXiv Detail & Related papers (2023-11-13T15:25:42Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.