Improving 3D Few-Shot Segmentation with Inference-Time Pseudo-Labeling
- URL: http://arxiv.org/abs/2410.09967v1
- Date: Sun, 13 Oct 2024 19:07:07 GMT
- Title: Improving 3D Few-Shot Segmentation with Inference-Time Pseudo-Labeling
- Authors: Mohammad Mozafari, Hosein Hasani, Reza Vahidimajd, Mohamadreza Fereydooni, Mahdieh Soleymani Baghshah,
- Abstract summary: We present a novel strategy to efficiently leverage the intrinsic information of the query sample for final segmentation during inference.
The proposed method can effectively boost performance across diverse settings and datasets.
- Score: 3.4387114292512457
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, few-shot segmentation (FSS) models have emerged as a promising approach in medical imaging analysis, offering remarkable adaptability to segment novel classes with limited annotated data. Existing approaches to few-shot segmentation have often overlooked the potential of the query itself, failing to fully utilize the valuable information it contains. However, treating the query as unlabeled data provides an opportunity to enhance prediction accuracy. Specifically in the domain of medical imaging, the volumetric structure of queries offers a considerable source of valuable information that can be used to improve the target slice segmentation. In this work, we present a novel strategy to efficiently leverage the intrinsic information of the query sample for final segmentation during inference. First, we use the support slices from a reference volume to generate an initial segmentation score for the query slices through a prototypical approach. Subsequently, we apply a confidence-aware pseudo-labeling procedure to transfer the most informative parts of query slices to the support set. The final prediction is performed based on the new expanded support set, enabling the prediction of a more accurate segmentation mask for the query volume. Extensive experiments show that the proposed method can effectively boost performance across diverse settings and datasets.
Related papers
- iSeg: An Iterative Refinement-based Framework for Training-free Segmentation [85.58324416386375]
We present a deep experimental analysis on iteratively refining cross-attention map with self-attention map.
We propose an effective iterative refinement framework for training-free segmentation, named iSeg.
Our proposed iSeg achieves an absolute gain of 3.8% in terms of mIoU compared to the best existing training-free approach in literature.
arXiv Detail & Related papers (2024-09-05T03:07:26Z) - MatchSeg: Towards Better Segmentation via Reference Image Matching [5.55078598520531]
Few-shot learning aims to overcome the need for annotated data by using a small labeled dataset, known as a support set, to guide predicting labels for new, unlabeled images.
Inspired by this paradigm, we introduce MatchSeg, a novel framework that enhances medical image segmentation through strategic reference image matching.
arXiv Detail & Related papers (2024-03-23T18:04:58Z) - Boosting Few-Shot Segmentation via Instance-Aware Data Augmentation and
Local Consensus Guided Cross Attention [7.939095881813804]
Few-shot segmentation aims to train a segmentation model that can fast adapt to a novel task for which only a few annotated images are provided.
We introduce an instance-aware data augmentation (IDA) strategy that augments the support images based on the relative sizes of the target objects.
The proposed IDA effectively increases the support set's diversity and promotes the distribution consistency between support and query images.
arXiv Detail & Related papers (2024-01-18T10:29:10Z) - Rapid model transfer for medical image segmentation via iterative
human-in-the-loop update: from labelled public to unlabelled clinical
datasets for multi-organ segmentation in CT [22.411929051477912]
This paper presents a novel and generic human-in-the-loop scheme for efficiently transferring a segmentation model from a small-scale labelled dataset to a larger-scale unlabelled dataset for multi-organ segmentation in CT.
The results show that our scheme can not only improve the performance by 19.7% on Dice, but also expedite the cost time of manual labelling from 13.87 min to 1.51 min per CT volume during the model transfer, demonstrating the clinical usefulness with promising potentials.
arXiv Detail & Related papers (2022-04-13T08:22:42Z) - FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality
Assessment [93.09267863425492]
We argue that understanding both high-level semantics and internal temporal structures of actions in competitive sports videos is the key to making predictions accurate and interpretable.
We construct a new fine-grained dataset, called FineDiving, developed on diverse diving events with detailed annotations on action procedures.
arXiv Detail & Related papers (2022-04-07T17:59:32Z) - Few-Shot Segmentation with Global and Local Contrastive Learning [51.677179037590356]
We propose a prior extractor to learn the query information from the unlabeled images with our proposed global-local contrastive learning.
We generate the prior region maps for query images, which locate the objects, as guidance to perform cross interaction with support features.
Without bells and whistles, the proposed approach achieves new state-of-the-art performance for the few-shot segmentation task.
arXiv Detail & Related papers (2021-08-11T15:52:22Z) - A Positive/Unlabeled Approach for the Segmentation of Medical Sequences
using Point-Wise Supervision [3.883460584034766]
We propose a new method to efficiently segment medical imaging volumes or videos using point-wise annotations only.
Our approach trains a deep learning model using an appropriate Positive/Unlabeled objective function using point-wise annotations.
We show experimentally that our approach outperforms state-of-the-art methods tailored to the same problem.
arXiv Detail & Related papers (2021-07-18T09:13:33Z) - Target-Aware Object Discovery and Association for Unsupervised Video
Multi-Object Segmentation [79.6596425920849]
This paper addresses the task of unsupervised video multi-object segmentation.
We introduce a novel approach for more accurate and efficient unseen-temporal segmentation.
We evaluate the proposed approach on DAVIS$_17$ and YouTube-VIS, and the results demonstrate that it outperforms state-of-the-art methods both in segmentation accuracy and inference speed.
arXiv Detail & Related papers (2021-04-10T14:39:44Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
We propose a self-guided learning approach for few-shot segmentation.
By making an initial prediction for the annotated support image, the covered and uncovered foreground regions are encoded to the primary and auxiliary support vectors.
By aggregating both primary and auxiliary support vectors, better segmentation performances are obtained on query images.
arXiv Detail & Related papers (2021-03-30T07:36:41Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z) - Self-Supervised Tuning for Few-Shot Segmentation [82.32143982269892]
Few-shot segmentation aims at assigning a category label to each image pixel with few annotated samples.
Existing meta-learning method tends to fail in generating category-specifically discriminative descriptor when the visual features extracted from support images are marginalized in embedding space.
This paper presents an adaptive framework tuning, in which the distribution of latent features across different episodes is dynamically adjusted based on a self-segmentation scheme.
arXiv Detail & Related papers (2020-04-12T03:53:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.