論文の概要: VQ-CNMP: Neuro-Symbolic Skill Learning for Bi-Level Planning
- arxiv url: http://arxiv.org/abs/2410.10045v1
- Date: Sun, 13 Oct 2024 23:29:46 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:33:49.611664
- Title: VQ-CNMP: Neuro-Symbolic Skill Learning for Bi-Level Planning
- Title(参考訳): VQ-CNMP:バイレベルプランニングのためのニューロシンボリックスキル学習
- Authors: Hakan Aktas, Emre Ugur,
- Abstract要約: ラベルのない実演データから高いレベルのスキル表現を発見できる新しいニューラルネットワークモデルを提案する。
また、勾配に基づく計画手法を用いて、我々のモデルを利用する二段階計画パイプラインを提案する。
- 参考スコア(独自算出の注目度): 1.9336815376402723
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a novel neural network model capable of discovering high-level skill representations from unlabeled demonstration data. We also propose a bi-level planning pipeline that utilizes our model using a gradient-based planning approach. While extracting high-level representations, our model also preserves the low-level information, which can be used for low-level action planning. In the experiments, we tested the skill discovery performance of our model under different conditions, tested whether Multi-Modal LLMs can be utilized to label the learned high-level skill representations, and finally tested the high-level and low-level planning performance of our pipeline.
- Abstract(参考訳): 本稿では,ラベルのない実演データから高いレベルのスキル表現を発見できる新しいニューラルネットワークモデルを提案する。
また、勾配に基づく計画手法を用いて、我々のモデルを利用する二段階計画パイプラインを提案する。
ハイレベルな表現を抽出しながら、低レベルなアクションプランニングに使用できる低レベルな情報も保存する。
実験では、異なる条件下でモデルのスキル発見性能を検証し、学習したハイレベルなスキル表現をラベル付けするためにマルチモーダルLCMを使用できるかどうかを検証し、最終的にパイプラインのハイレベルかつ低レベルな計画性能をテストした。
関連論文リスト
- Making Large Vision Language Models to be Good Few-shot Learners [11.204701216476815]
FSC(Few-shot Classification)は、コンピュータビジョンにおける基本的な課題である。
LVLMは、サポートデータから有用な情報を効果的に抽出するのではなく、特定の応答形式を学習するリスクを負う。
本稿では,FSCにおけるLVLMの性能について検討し,学習不足や重度の位置バイアスの有無などの重要な問題を明らかにする。
論文 参考訳(メタデータ) (2024-08-21T03:01:11Z) - Affordances-Oriented Planning using Foundation Models for Continuous Vision-Language Navigation [64.84996994779443]
本稿では,連続視覚言語ナビゲーション(VLN)タスクのためのAffordances-Oriented Plannerを提案する。
我々のAO-Plannerは、様々な基礎モデルを統合して、アベイランス指向の低レベルな動き計画とハイレベルな意思決定を実現する。
挑戦的なR2R-CEデータセットとRxR-CEデータセットの実験は、AO-Plannerが最先端のゼロショットのパフォーマンスを達成したことを示している。
論文 参考訳(メタデータ) (2024-07-08T12:52:46Z) - Test-Time Training on Graphs with Large Language Models (LLMs) [68.375487369596]
グラフニューラルネットワーク(GNN)をトレーニングするための有望なアプローチとして,TTT(Test-Time Training)が提案されている。
テキスト分散グラフ(TAG)上でのLLM(Large Language Models)の優れたアノテーション能力に着想を得て,LLMをアノテータとしてグラフ上でのテスト時間トレーニングを強化することを提案する。
2段階のトレーニング戦略は、限定的でノイズの多いラベルでテストタイムモデルを調整するように設計されている。
論文 参考訳(メタデータ) (2024-04-21T08:20:02Z) - Active Prompt Learning in Vision Language Models [21.276006224504748]
我々は,PCBと表記される事前学習型視覚言語モデルのための新しいアクティブラーニングフレームワークを考案した。
そこで本研究では,7つの実世界のデータセットを用いて実験を行い,PCBが従来の能動的学習法やランダムサンプリング法を超えることを示した。
論文 参考訳(メタデータ) (2023-11-18T22:42:16Z) - Slot Induction via Pre-trained Language Model Probing and Multi-level
Contrastive Learning [62.839109775887025]
トークンレベルのスロットアノテーションの明示的な知識なしでスロット境界を誘導することを目的としたスロットインジェクション(SI)タスク。
PLMから抽出した教師なし意味知識を活用するために、教師なし事前学習言語モデル(PLM)探索とコントラスト学習機構を活用することを提案する。
提案手法は,2つのNLUベンチマークデータセット上でトークンレベルの教師付きモデルとのギャップを埋めることができ,SIタスクに有効であることが示されている。
論文 参考訳(メタデータ) (2023-08-09T05:08:57Z) - Leveraging Jumpy Models for Planning and Fast Learning in Robotic
Domains [25.245208731491346]
本研究では,ラベルのない経験からマルチステップダイナミクス予測モデル(ジャンピーモデル)を学習する問題について検討する。
我々は,以前に収集した経験から,スキル埋め込みスペースのオフライン化とともに,跳躍モデルを学習することを提案する。
我々は、RGBスタック環境で一連の実験を行い、学習したスキルと関連するモデルによる計画が、新しいタスクにゼロショットの一般化を可能にすることを示す。
論文 参考訳(メタデータ) (2023-02-24T13:26:03Z) - Hierarchical Imitation Learning with Vector Quantized Models [77.67190661002691]
我々は,専門家の軌跡におけるサブゴールの同定に強化学習を用いることを提案する。
同定されたサブゴールに対するベクトル量子化生成モデルを構築し,サブゴールレベルの計画を行う。
実験では、このアルゴリズムは複雑な長い水平決定問題の解法に優れ、最先端のアルゴリズムよりも優れている。
論文 参考訳(メタデータ) (2023-01-30T15:04:39Z) - Learning Neuro-Symbolic Skills for Bilevel Planning [63.388694268198655]
意思決定は、連続したオブジェクト中心の状態、継続的なアクション、長い地平線、まばらなフィードバックを持つロボット環境では難しい。
タスク・アンド・モーション・プランニング(TAMP)のような階層的なアプローチは、意思決定を2つ以上の抽象レベルに分解することでこれらの課題に対処する。
我々の主な貢献は、オペレーターとサンプルラーを組み合わせたパラメータ化警察の学習方法である。
論文 参考訳(メタデータ) (2022-06-21T19:01:19Z) - Learning Purified Feature Representations from Task-irrelevant Labels [18.967445416679624]
本稿では,タスク関連ラベルから抽出したタスク関連機能を利用したPurifiedLearningという新しい学習フレームワークを提案する。
本研究は,PurifiedLearningの有効性を実証する,ソリッド理論解析と広範囲な実験に基づいている。
論文 参考訳(メタデータ) (2021-02-22T12:50:49Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
線形化ラベル付き文に基づいて訓練された言語モデルを用いた新しい拡張手法を提案する。
本手法は, 教師付き設定と半教師付き設定の両方に適用可能である。
論文 参考訳(メタデータ) (2020-11-03T07:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。