Towards Bridging Generalization and Expressivity of Graph Neural Networks
- URL: http://arxiv.org/abs/2410.10051v1
- Date: Mon, 14 Oct 2024 00:31:16 GMT
- Title: Towards Bridging Generalization and Expressivity of Graph Neural Networks
- Authors: Shouheng Li, Floris Geerts, Dongwoo Kim, Qing Wang,
- Abstract summary: We study the relationship between expressivity and generalization in graph neural networks (GNNs)
We introduce a novel framework that connects GNN generalization to the variance in graph structures they can capture.
We uncover a trade-off between intra-class concentration and inter-class separation, both of which are crucial for effective generalization.
- Score: 11.560730203511111
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Expressivity and generalization are two critical aspects of graph neural networks (GNNs). While significant progress has been made in studying the expressivity of GNNs, much less is known about their generalization capabilities, particularly when dealing with the inherent complexity of graph-structured data. In this work, we address the intricate relationship between expressivity and generalization in GNNs. Theoretical studies conjecture a trade-off between the two: highly expressive models risk overfitting, while those focused on generalization may sacrifice expressivity. However, empirical evidence often contradicts this assumption, with expressive GNNs frequently demonstrating strong generalization. We explore this contradiction by introducing a novel framework that connects GNN generalization to the variance in graph structures they can capture. This leads us to propose a $k$-variance margin-based generalization bound that characterizes the structural properties of graph embeddings in terms of their upper-bounded expressive power. Our analysis does not rely on specific GNN architectures, making it broadly applicable across GNN models. We further uncover a trade-off between intra-class concentration and inter-class separation, both of which are crucial for effective generalization. Through case studies and experiments on real-world datasets, we demonstrate that our theoretical findings align with empirical results, offering a deeper understanding of how expressivity can enhance GNN generalization.
Related papers
- Generalization of Geometric Graph Neural Networks [84.01980526069075]
We study the generalization capabilities of geometric graph neural networks (GNNs)
We prove a generalization gap between the optimal empirical risk and the optimal statistical risk of this GNN.
The most important observation is that the generalization capability can be realized with one large graph instead of being limited to the size of the graph as in previous results.
arXiv Detail & Related papers (2024-09-08T18:55:57Z) - Generalization of Graph Neural Networks is Robust to Model Mismatch [84.01980526069075]
Graph neural networks (GNNs) have demonstrated their effectiveness in various tasks supported by their generalization capabilities.
In this paper, we examine GNNs that operate on geometric graphs generated from manifold models.
Our analysis reveals the robustness of the GNN generalization in the presence of such model mismatch.
arXiv Detail & Related papers (2024-08-25T16:00:44Z) - A Manifold Perspective on the Statistical Generalization of Graph Neural Networks [84.01980526069075]
We take a manifold perspective to establish the statistical generalization theory of GNNs on graphs sampled from a manifold in the spectral domain.
We prove that the generalization bounds of GNNs decrease linearly with the size of the graphs in the logarithmic scale, and increase linearly with the spectral continuity constants of the filter functions.
arXiv Detail & Related papers (2024-06-07T19:25:02Z) - Generalization of Graph Neural Networks through the Lens of Homomorphism [7.223313563198697]
We propose to study the generalization of Graph Neural Networks (GNNs) through a novel perspective - analyzing the entropy of graph homomorphism.
By linking graph homomorphism with information-theoretic measures, we derive generalization bounds for both graph and node classifications.
These bounds are capable of capturing subtleties inherent in various graph structures, including but not limited to paths, cycles and cliques.
arXiv Detail & Related papers (2024-03-10T03:51:59Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - Beyond Weisfeiler-Lehman: A Quantitative Framework for GNN
Expressiveness [35.409017863665575]
Homomorphism expressivity measures the ability of GNN models to count graphs under homomorphism.
By examining four classes of prominent GNNs as case studies, we derive simple, unified, and elegant descriptions of their homomorphism expressivity.
Our results provide novel insights into a series of previous work, unify the landscape of different subareas in the community, and settle several open questions.
arXiv Detail & Related papers (2024-01-16T17:23:23Z) - Towards Understanding the Generalization of Graph Neural Networks [9.217947432437546]
Graph neural networks (GNNs) are the most widely adopted model in graph-structured data oriented learning and representation.
We first establish high probability bounds of generalization gap and gradients in transductive learning.
The theoretical results reveal the architecture specific factors affecting the generalization gap.
arXiv Detail & Related papers (2023-05-14T03:05:14Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
This extended abstract describes a framework for analyzing the expressiveness, learning, and (structural) generalization of hypergraph neural networks (HyperGNNs)
Specifically, we focus on how HyperGNNs can learn from finite datasets and generalize structurally to graph reasoning problems of arbitrary input sizes.
arXiv Detail & Related papers (2023-03-09T18:42:18Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.