NeRF-enabled Analysis-Through-Synthesis for ISAR Imaging of Small Everyday Objects with Sparse and Noisy UWB Radar Data
- URL: http://arxiv.org/abs/2410.10085v1
- Date: Mon, 14 Oct 2024 01:57:49 GMT
- Title: NeRF-enabled Analysis-Through-Synthesis for ISAR Imaging of Small Everyday Objects with Sparse and Noisy UWB Radar Data
- Authors: Md Farhan Tasnim Oshim, Albert Reed, Suren Jayasuriya, Tauhidur Rahman,
- Abstract summary: Inverse Synthetic Aperture Radar (ISAR) imaging presents a formidable challenge when it comes to small everyday objects.
Existing ISAR reconstruction methods including backprojection (BP) often require complex setups and controlled environments.
We propose a novel Analysis-through-Synthesis (ATS) framework for high-resolution coherent ISAR imaging of small objects.
- Score: 3.2053758046072254
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Inverse Synthetic Aperture Radar (ISAR) imaging presents a formidable challenge when it comes to small everyday objects due to their limited Radar Cross-Section (RCS) and the inherent resolution constraints of radar systems. Existing ISAR reconstruction methods including backprojection (BP) often require complex setups and controlled environments, rendering them impractical for many real-world noisy scenarios. In this paper, we propose a novel Analysis-through-Synthesis (ATS) framework enabled by Neural Radiance Fields (NeRF) for high-resolution coherent ISAR imaging of small objects using sparse and noisy Ultra-Wideband (UWB) radar data with an inexpensive and portable setup. Our end-to-end framework integrates ultra-wideband radar wave propagation, reflection characteristics, and scene priors, enabling efficient 2D scene reconstruction without the need for costly anechoic chambers or complex measurement test beds. With qualitative and quantitative comparisons, we demonstrate that the proposed method outperforms traditional techniques and generates ISAR images of complex scenes with multiple targets and complex structures in Non-Line-of-Sight (NLOS) and noisy scenarios, particularly with limited number of views and sparse UWB radar scans. This work represents a significant step towards practical, cost-effective ISAR imaging of small everyday objects, with broad implications for robotics and mobile sensing applications.
Related papers
- Active Reconfigurable Intelligent Surface Empowered Synthetic Aperture Radar Imaging [18.482494583284627]
Synthetic Aperture Radar (SAR) utilizes the movement of the radar antenna over a specific area interest to achieve higher resolution imaging.
We present a range-Doppler (RD) imaging algorithm to obtain imaging results for the proposed ARIS-empowered SAR system.
arXiv Detail & Related papers (2024-09-18T06:33:11Z) - Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks [0.0]
This research contributes to the field of remote sensing by bridging the gap between SAR and EO imagery.
The results show significant improvements in interpretability, making SAR data more accessible for analysts familiar with EO imagery.
Our research contributes to the field of remote sensing by bridging the gap between SAR and EO imagery, offering a novel tool for enhanced data interpretation.
arXiv Detail & Related papers (2024-09-07T14:31:46Z) - Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers.
Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements.
We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure.
arXiv Detail & Related papers (2024-05-07T20:44:48Z) - DART: Implicit Doppler Tomography for Radar Novel View Synthesis [9.26298115522881]
DART is a Neural Radiance Field-inspired method which uses radar-specific physics to create a reflectance and transmittance-based rendering pipeline for range-Doppler images.
In comparison to state-of-the-art baselines, DART synthesizes superior radar range-Doppler images from novel views across all datasets.
arXiv Detail & Related papers (2024-03-06T17:54:50Z) - Pano-NeRF: Synthesizing High Dynamic Range Novel Views with Geometry
from Sparse Low Dynamic Range Panoramic Images [82.1477261107279]
We propose the irradiance fields from sparse LDR panoramic images to increase the observation counts for faithful geometry recovery.
Experiments demonstrate that the irradiance fields outperform state-of-the-art methods on both geometry recovery and HDR reconstruction.
arXiv Detail & Related papers (2023-12-26T08:10:22Z) - Diffusion Models for Interferometric Satellite Aperture Radar [73.01013149014865]
Probabilistic Diffusion Models (PDMs) have recently emerged as a very promising class of generative models.
Here, we leverage PDMs to generate several radar-based satellite image datasets.
We show that PDMs succeed in generating images with complex and realistic structures, but that sampling time remains an issue.
arXiv Detail & Related papers (2023-08-31T16:26:17Z) - Realistic Noise Synthesis with Diffusion Models [68.48859665320828]
Deep image denoising models often rely on large amount of training data for the high quality performance.
We propose a novel method that synthesizes realistic noise using diffusion models, namely Realistic Noise Synthesize Diffusor (RNSD)
RNSD can incorporate guided multiscale content, such as more realistic noise with spatial correlations can be generated at multiple frequencies.
arXiv Detail & Related papers (2023-05-23T12:56:01Z) - Efficient CNN-based Super Resolution Algorithms for mmWave Mobile Radar
Imaging [2.3623206450285457]
We introduce an innovative super resolution approach to emerging modes of near-field synthetic aperture radar (SAR) imaging.
Recent research extends convolutional neural network (CNN) architectures to achieve super resolution on images generated from radar signaling.
We propose a novel CNN architecture to achieve SAR image super-resolution for mobile applications by employing state-of-the-art SAR processing and deep learning techniques.
arXiv Detail & Related papers (2023-05-03T12:54:28Z) - A Vision Transformer Approach for Efficient Near-Field Irregular SAR
Super-Resolution [0.0]
We introduce a mobile-friend vision transformer (ViT) architecture to address position estimation error and perform SAR image super-resolution (SR) under irregular sampling geometries.
The proposed algorithm, Mobile-SRViT, is the first to employ a ViT approach for SAR image enhancement and is validated in simulation and via empirical studies.
arXiv Detail & Related papers (2023-05-03T12:25:01Z) - CLONeR: Camera-Lidar Fusion for Occupancy Grid-aided Neural
Representations [77.90883737693325]
This paper proposes CLONeR, which significantly improves upon NeRF by allowing it to model large outdoor driving scenes observed from sparse input sensor views.
This is achieved by decoupling occupancy and color learning within the NeRF framework into separate Multi-Layer Perceptrons (MLPs) trained using LiDAR and camera data, respectively.
In addition, this paper proposes a novel method to build differentiable 3D Occupancy Grid Maps (OGM) alongside the NeRF model, and leverage this occupancy grid for improved sampling of points along a ray for rendering in metric space.
arXiv Detail & Related papers (2022-09-02T17:44:50Z) - RRNet: Relational Reasoning Network with Parallel Multi-scale Attention
for Salient Object Detection in Optical Remote Sensing Images [82.1679766706423]
Salient object detection (SOD) for optical remote sensing images (RSIs) aims at locating and extracting visually distinctive objects/regions from the optical RSIs.
We propose a relational reasoning network with parallel multi-scale attention for SOD in optical RSIs.
Our proposed RRNet outperforms the existing state-of-the-art SOD competitors both qualitatively and quantitatively.
arXiv Detail & Related papers (2021-10-27T07:18:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.