Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks
- URL: http://arxiv.org/abs/2409.15331v1
- Date: Sat, 7 Sep 2024 14:31:46 GMT
- Title: Electrooptical Image Synthesis from SAR Imagery Using Generative Adversarial Networks
- Authors: Grant Rosario, David Noever,
- Abstract summary: This research contributes to the field of remote sensing by bridging the gap between SAR and EO imagery.
The results show significant improvements in interpretability, making SAR data more accessible for analysts familiar with EO imagery.
Our research contributes to the field of remote sensing by bridging the gap between SAR and EO imagery, offering a novel tool for enhanced data interpretation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The utility of Synthetic Aperture Radar (SAR) imagery in remote sensing and satellite image analysis is well established, offering robustness under various weather and lighting conditions. However, SAR images, characterized by their unique structural and texture characteristics, often pose interpretability challenges for analysts accustomed to electrooptical (EO) imagery. This application compares state-of-the-art Generative Adversarial Networks (GANs) including Pix2Pix, CycleGan, S-CycleGan, and a novel dual?generator GAN utilizing partial convolutions and a novel dual-generator architecture utilizing transformers. These models are designed to progressively refine the realism in the translated optical images, thereby enhancing the visual interpretability of SAR data. We demonstrate the efficacy of our approach through qualitative and quantitative evaluations, comparing the synthesized EO images with actual EO images in terms of visual fidelity and feature preservation. The results show significant improvements in interpretability, making SAR data more accessible for analysts familiar with EO imagery. Furthermore, we explore the potential of this technology in various applications, including environmental monitoring, urban planning, and military reconnaissance, where rapid, accurate interpretation of SAR data is crucial. Our research contributes to the field of remote sensing by bridging the gap between SAR and EO imagery, offering a novel tool for enhanced data interpretation and broader application of SAR technology in various domains.
Related papers
- Conditional Brownian Bridge Diffusion Model for VHR SAR to Optical Image Translation [5.578820789388206]
This paper introduces a conditional image-to-image translation approach based on Brownian Bridge Diffusion Model (BBDM)
We conducted comprehensive experiments on the MSAW dataset, a paired SAR and optical images collection of 0.5m Very-High-Resolution (VHR)
arXiv Detail & Related papers (2024-08-15T05:43:46Z) - X-Fake: Juggling Utility Evaluation and Explanation of Simulated SAR Images [49.546627070454456]
The distribution inconsistency between real and simulated data is the main obstacle that influences the utility of simulated SAR images.
We propose a novel trustworthy utility evaluation framework with a counterfactual explanation for simulated SAR images for the first time, denoted as X-Fake.
The proposed framework is validated on four simulated SAR image datasets obtained from electromagnetic models and generative artificial intelligence approaches.
arXiv Detail & Related papers (2024-07-28T09:27:53Z) - SAR to Optical Image Translation with Color Supervised Diffusion Model [5.234109158596138]
This paper introduces an innovative generative model designed to transform SAR images into more intelligible optical images.
We employ SAR images as conditional guides in the sampling process and integrate color supervision to counteract color shift issues.
arXiv Detail & Related papers (2024-07-24T01:11:28Z) - TSGAN: An Optical-to-SAR Dual Conditional GAN for Optical based SAR
Temporal Shifting [0.6827423171182154]
This study explores the lesser-investigated domain of Optical-to-SAR translation.
We propose a novel approach, termed SAR Temporal Shifting, which inputs an optical data from the desired timestamp along with a SAR data from a different temporal point.
This model modifies the SAR data based on the changes observed in optical data to generate the SAR data for the desired timestamp.
arXiv Detail & Related papers (2023-12-31T09:38:53Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
The presence of speckle degrades the image quality and adversely affects the performance of SAR image understanding applications.
We introduce SAR-DDPM, a denoising diffusion probabilistic model for SAR despeckling.
The proposed method achieves significant improvements in both quantitative and qualitative results over the state-of-the-art despeckling methods.
arXiv Detail & Related papers (2022-06-09T14:00:26Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Enhancing Photorealism Enhancement [83.88433283714461]
We present an approach to enhancing the realism of synthetic images using a convolutional network.
We analyze scene layout distributions in commonly used datasets and find that they differ in important ways.
We report substantial gains in stability and realism in comparison to recent image-to-image translation methods.
arXiv Detail & Related papers (2021-05-10T19:00:49Z) - Visualization of Deep Transfer Learning In SAR Imagery [0.0]
We consider transfer learning to leverage deep features from a network trained on an EO ships dataset.
By exploring the network activations in the form of class-activation maps, we gain insight on how a deep network interprets a new modality.
arXiv Detail & Related papers (2021-03-20T00:16:15Z) - Generative Adversarial Networks for Synthesizing InSAR Patches [15.260123615399035]
Generative Adversarial Networks (GANs) have been employed with certain success for image translation tasks between optical and real-valued SAR intensity imagery.
The synthesis of artificial complex-valued InSAR image stacks asks for, besides good perceptual quality, more stringent quality metrics like phase noise and phase coherence.
This paper provides a signal processing model of generative CNN structures, describes effects influencing those quality metrics and presents a mapping scheme of complex-valued data to given CNN structures.
arXiv Detail & Related papers (2020-08-03T20:51:01Z) - Two-shot Spatially-varying BRDF and Shape Estimation [89.29020624201708]
We propose a novel deep learning architecture with a stage-wise estimation of shape and SVBRDF.
We create a large-scale synthetic training dataset with domain-randomized geometry and realistic materials.
Experiments on both synthetic and real-world datasets show that our network trained on a synthetic dataset can generalize well to real-world images.
arXiv Detail & Related papers (2020-04-01T12:56:13Z) - Unlimited Resolution Image Generation with R2D2-GANs [69.90258455164513]
We present a novel simulation technique for generating high quality images of any predefined resolution.
This method can be used to synthesize sonar scans of size equivalent to those collected during a full-length mission.
The data produced is continuous, realistically-looking, and can also be generated at least two times faster than the real speed of acquisition.
arXiv Detail & Related papers (2020-03-02T17:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.