Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models
- URL: http://arxiv.org/abs/2410.10166v1
- Date: Mon, 14 Oct 2024 05:18:07 GMT
- Title: Automated Filtering of Human Feedback Data for Aligning Text-to-Image Diffusion Models
- Authors: Yongjin Yang, Sihyeon Kim, Hojung Jung, Sangmin Bae, SangMook Kim, Se-Young Yun, Kimin Lee,
- Abstract summary: Fine-tuning text-to-image diffusion models with human feedback is an effective method for aligning model behavior with human intentions.
However, this alignment process often suffers from slow convergence due to the large size and noise present in human feedback datasets.
We propose FiFA, a novel automated data filtering algorithm designed to enhance the fine-tuning of diffusion models using human feedback datasets.
- Score: 36.84880190385986
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning text-to-image diffusion models with human feedback is an effective method for aligning model behavior with human intentions. However, this alignment process often suffers from slow convergence due to the large size and noise present in human feedback datasets. In this work, we propose FiFA, a novel automated data filtering algorithm designed to enhance the fine-tuning of diffusion models using human feedback datasets with direct preference optimization (DPO). Specifically, our approach selects data by solving an optimization problem to maximize three components: preference margin, text quality, and text diversity. The concept of preference margin is used to identify samples that contain high informational value to address the noisy nature of feedback dataset, which is calculated using a proxy reward model. Additionally, we incorporate text quality, assessed by large language models to prevent harmful contents, and consider text diversity through a k-nearest neighbor entropy estimator to improve generalization. Finally, we integrate all these components into an optimization process, with approximating the solution by assigning importance score to each data pair and selecting the most important ones. As a result, our method efficiently filters data automatically, without the need for manual intervention, and can be applied to any large-scale dataset. Experimental results show that FiFA significantly enhances training stability and achieves better performance, being preferred by humans 17% more, while using less than 0.5% of the full data and thus 1% of the GPU hours compared to utilizing full human feedback datasets.
Related papers
- Hybrid Preferences: Learning to Route Instances for Human vs. AI Feedback [87.37721254914476]
We introduce a routing framework that combines inputs from humans and LMs to achieve better annotation quality.
We train a performance prediction model to predict a reward model's performance on an arbitrary combination of human and LM annotations.
We show that the selected hybrid mixture achieves better reward model performance compared to using either one exclusively.
arXiv Detail & Related papers (2024-10-24T20:04:15Z) - Model-based Preference Optimization in Abstractive Summarization without Human Feedback [5.438770095369458]
We introduce Model-based Preference Optimization (MPO) to fine-tune Large Language Models for improved summarization abilities without any human feedback.
Our experiments on standard summarization datasets and various metrics demonstrate that our proposed MPO significantly enhances the quality of generated summaries without relying on human feedback.
arXiv Detail & Related papers (2024-09-27T10:35:45Z) - Aligning Large Language Models with Self-generated Preference Data [72.99676237703099]
We propose a new framework that boosts the alignment of large language models (LLMs) with human preferences.
Our key idea is leveraging the human prior knowledge within the small (seed) data.
We introduce a noise-aware preference learning algorithm to mitigate the risk of low quality within generated preference data.
arXiv Detail & Related papers (2024-06-06T18:01:02Z) - Adaptive Preference Scaling for Reinforcement Learning with Human Feedback [103.36048042664768]
Reinforcement learning from human feedback (RLHF) is a prevalent approach to align AI systems with human values.
We propose a novel adaptive preference loss, underpinned by distributionally robust optimization (DRO)
Our method is versatile and can be readily adapted to various preference optimization frameworks.
arXiv Detail & Related papers (2024-06-04T20:33:22Z) - Filter & Align: Leveraging Human Knowledge to Curate Image-Text Data [31.507451966555383]
We present a novel algorithm that incorporates human knowledge on image-text alignment to guide filtering vast corpus of web-crawled image-text datasets.
We collect a diverse image-text dataset where each image is associated with multiple captions from various sources.
We train a reward model on these human-preference annotations to internalize the nuanced human understanding of image-text alignment.
arXiv Detail & Related papers (2023-12-11T05:57:09Z) - Efficient Online Data Mixing For Language Model Pre-Training [101.45242332613944]
Existing data selection methods suffer from slow and computationally expensive processes.
Data mixing, on the other hand, reduces the complexity of data selection by grouping data points together.
We develop an efficient algorithm for Online Data Mixing (ODM) that combines elements from both data selection and data mixing.
arXiv Detail & Related papers (2023-12-05T00:42:35Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
arXiv Detail & Related papers (2023-11-21T15:24:05Z) - Infinite Recommendation Networks: A Data-Centric Approach [8.044430277912936]
We leverage the Neural Tangent Kernel to train infinitely-wide neural networks to devise $infty$-AE: an autoencoder with infinitely-wide bottleneck layers.
We also develop Distill-CF for synthesizing tiny, high-fidelity data summaries.
We observe 96-105% of $infty$-AE's performance on the full dataset with as little as 0.1% of the original dataset size.
arXiv Detail & Related papers (2022-06-03T00:34:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.