Diffusion Model Alignment Using Direct Preference Optimization
- URL: http://arxiv.org/abs/2311.12908v1
- Date: Tue, 21 Nov 2023 15:24:05 GMT
- Title: Diffusion Model Alignment Using Direct Preference Optimization
- Authors: Bram Wallace, Meihua Dang, Rafael Rafailov, Linqi Zhou, Aaron Lou,
Senthil Purushwalkam, Stefano Ermon, Caiming Xiong, Shafiq Joty, Nikhil Naik
- Abstract summary: Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
- Score: 103.2238655827797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) are fine-tuned using human comparison data with
Reinforcement Learning from Human Feedback (RLHF) methods to make them better
aligned with users' preferences. In contrast to LLMs, human preference learning
has not been widely explored in text-to-image diffusion models; the best
existing approach is to fine-tune a pretrained model using carefully curated
high quality images and captions to improve visual appeal and text alignment.
We propose Diffusion-DPO, a method to align diffusion models to human
preferences by directly optimizing on human comparison data. Diffusion-DPO is
adapted from the recently developed Direct Preference Optimization (DPO), a
simpler alternative to RLHF which directly optimizes a policy that best
satisfies human preferences under a classification objective. We re-formulate
DPO to account for a diffusion model notion of likelihood, utilizing the
evidence lower bound to derive a differentiable objective. Using the Pick-a-Pic
dataset of 851K crowdsourced pairwise preferences, we fine-tune the base model
of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with
Diffusion-DPO. Our fine-tuned base model significantly outperforms both base
SDXL-1.0 and the larger SDXL-1.0 model consisting of an additional refinement
model in human evaluation, improving visual appeal and prompt alignment. We
also develop a variant that uses AI feedback and has comparable performance to
training on human preferences, opening the door for scaling of diffusion model
alignment methods.
Related papers
- Scalable Ranked Preference Optimization for Text-to-Image Generation [76.16285931871948]
We investigate a scalable approach for collecting large-scale and fully synthetic datasets for DPO training.
The preferences for paired images are generated using a pre-trained reward function, eliminating the need for involving humans in the annotation process.
We introduce RankDPO to enhance DPO-based methods using the ranking feedback.
arXiv Detail & Related papers (2024-10-23T16:42:56Z) - Tuning Timestep-Distilled Diffusion Model Using Pairwise Sample Optimization [97.35427957922714]
We present an algorithm named pairwise sample optimization (PSO), which enables the direct fine-tuning of an arbitrary timestep-distilled diffusion model.
PSO introduces additional reference images sampled from the current time-step distilled model, and increases the relative likelihood margin between the training images and reference images.
We show that PSO can directly adapt distilled models to human-preferred generation with both offline and online-generated pairwise preference image data.
arXiv Detail & Related papers (2024-10-04T07:05:16Z) - Aligning Diffusion Models with Noise-Conditioned Perception [42.042822966928576]
Diffusion Models typically optimize in pixel or VAE space, which does not align well with human perception.
We propose using a perceptual objective in the U-Net embedding space of the diffusion model to address these issues.
arXiv Detail & Related papers (2024-06-25T15:21:50Z) - Diffusion-RPO: Aligning Diffusion Models through Relative Preference Optimization [68.69203905664524]
We introduce Diffusion-RPO, a new method designed to align diffusion-based T2I models with human preferences more effectively.
We have developed a new evaluation metric, style alignment, aimed at overcoming the challenges of high costs, low interpretability.
Our findings demonstrate that Diffusion-RPO outperforms established methods such as Supervised Fine-Tuning and Diffusion-DPO in tuning Stable Diffusion versions 1.5 and XL-1.0.
arXiv Detail & Related papers (2024-06-10T15:42:03Z) - Direct Preference Optimization With Unobserved Preference Heterogeneity [16.91835461818937]
This paper presents a new method to align generative models with varied human preferences.
We propose an Expectation-Maximization adaptation to DPO, generating a mixture of models based on latent preference types of the annotators.
Our algorithms leverage the simplicity of DPO while accommodating diverse preferences.
arXiv Detail & Related papers (2024-05-23T21:25:20Z) - Self-Play Fine-Tuning of Diffusion Models for Text-to-Image Generation [59.184980778643464]
Fine-tuning Diffusion Models remains an underexplored frontier in generative artificial intelligence (GenAI)
In this paper, we introduce an innovative technique called self-play fine-tuning for diffusion models (SPIN-Diffusion)
Our approach offers an alternative to conventional supervised fine-tuning and RL strategies, significantly improving both model performance and alignment.
arXiv Detail & Related papers (2024-02-15T18:59:18Z) - Using Human Feedback to Fine-tune Diffusion Models without Any Reward Model [38.25406127216304]
We introduce the Direct Preference for Denoising Diffusion Policy Optimization (D3PO) method to fine-tune diffusion models.
Although D3PO omits training a reward model, it effectively functions as the optimal reward model trained using human feedback data.
In experiments, our method uses the relative scale of objectives as a proxy for human preference, delivering comparable results to methods using ground-truth rewards.
arXiv Detail & Related papers (2023-11-22T08:42:46Z) - Training Diffusion Models with Reinforcement Learning [82.29328477109826]
Diffusion models are trained with an approximation to the log-likelihood objective.
In this paper, we investigate reinforcement learning methods for directly optimizing diffusion models for downstream objectives.
We describe how posing denoising as a multi-step decision-making problem enables a class of policy gradient algorithms.
arXiv Detail & Related papers (2023-05-22T17:57:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.