論文の概要: MagicEraser: Erasing Any Objects via Semantics-Aware Control
- arxiv url: http://arxiv.org/abs/2410.10207v1
- Date: Mon, 14 Oct 2024 07:03:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 02:24:44.275250
- Title: MagicEraser: Erasing Any Objects via Semantics-Aware Control
- Title(参考訳): MagicEraser: セマンティックス・アウェアコントロールによるオブジェクトの消去
- Authors: Fan Li, Zixiao Zhang, Yi Huang, Jianzhuang Liu, Renjing Pei, Bin Shao, Songcen Xu,
- Abstract要約: オブジェクト消去タスクに適した拡散モデルに基づくフレームワークであるMagicEraserを紹介する。
MagicEraserは、望ましくないアーティファクトを緩和しながら、コンテンツ生成の微細かつ効果的な制御を実現する。
- 参考スコア(独自算出の注目度): 40.683569840182926
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The traditional image inpainting task aims to restore corrupted regions by referencing surrounding background and foreground. However, the object erasure task, which is in increasing demand, aims to erase objects and generate harmonious background. Previous GAN-based inpainting methods struggle with intricate texture generation. Emerging diffusion model-based algorithms, such as Stable Diffusion Inpainting, exhibit the capability to generate novel content, but they often produce incongruent results at the locations of the erased objects and require high-quality text prompt inputs. To address these challenges, we introduce MagicEraser, a diffusion model-based framework tailored for the object erasure task. It consists of two phases: content initialization and controllable generation. In the latter phase, we develop two plug-and-play modules called prompt tuning and semantics-aware attention refocus. Additionally, we propose a data construction strategy that generates training data specially suitable for this task. MagicEraser achieves fine and effective control of content generation while mitigating undesired artifacts. Experimental results highlight a valuable advancement of our approach in the object erasure task.
- Abstract(参考訳): 従来の画像塗装作業は、周囲の背景や前景を参照することで、腐敗した地域を復元することを目的としている。
しかし, オブジェクト消去タスクは, 需要が高まっているため, オブジェクトを消去し, 調和した背景を生成することを目的としている。
従来のGANベースの塗布法は複雑なテクスチャ生成に苦慮していた。
安定拡散インペインティング(英語版)のような拡散モデルに基づくアルゴリズムは、新しいコンテンツを生成する能力を示すが、削除されたオブジェクトの場所において矛盾する結果をしばしば生成し、高品質なテキストプロンプト入力を必要とする。
これらの課題に対処するために,オブジェクト消去タスクに適した拡散モデルベースのフレームワークであるMagicEraserを紹介した。
コンテンツの初期化と制御可能な生成という2つのフェーズで構成されている。
後半の段階では,アクシデントチューニングとセマンティクスを意識した再焦点と呼ばれる2つのプラグイン・アンド・プレイモジュールを開発した。
さらに,本課題に適したトレーニングデータを生成するデータ構築戦略を提案する。
MagicEraserは、望ましくないアーティファクトを緩和しながら、コンテンツ生成の微細かつ効果的な制御を実現する。
実験結果から,オブジェクト消去作業におけるアプローチの貴重な進歩が明らかとなった。
関連論文リスト
- MagicTailor: Component-Controllable Personalization in Text-to-Image Diffusion Models [51.1034358143232]
本稿では,テキスト・ツー・イメージ(T2I)モデルの境界を押し上げる新しいタスクであるコンポーネント・コントロール可能なパーソナライゼーションを提案する。
これらの課題を克服するために、動的マスケード分解(DM-Deg)を活用して、望ましくない視覚的セマンティクスを動的に摂動させる革新的なフレームワークであるMagicTailorを設計する。
論文 参考訳(メタデータ) (2024-10-17T09:22:53Z) - Improving Text-guided Object Inpainting with Semantic Pre-inpainting [95.17396565347936]
我々は,典型的な単一ステージオブジェクトを2つのカスケードプロセス – セマンティックプリペイントと高磁場オブジェクト生成 – に分解する。
これを実現するために,トランスフォーマーをベースとしたセマンティックインパインとオブジェクトインパインティング拡散モデルをカスケードし,新しいCAscaded Transformer-Diffusionフレームワークを実現する。
論文 参考訳(メタデータ) (2024-09-12T17:55:37Z) - DiffUHaul: A Training-Free Method for Object Dragging in Images [78.93531472479202]
DiffUHaulと呼ばれるオブジェクトドラッグタスクのためのトレーニング不要な手法を提案する。
まず、各認知段階に注意マスキングを適用して、各生成を異なるオブジェクトにまたがってよりゆがみやすくする。
初期のデノナイジングステップでは、ソース画像とターゲット画像の注意特徴を補間して、新しいレイアウトを元の外観とスムーズに融合させる。
論文 参考訳(メタデータ) (2024-06-03T17:59:53Z) - Salient Object-Aware Background Generation using Text-Guided Diffusion Models [4.747826159446815]
本稿では, 安定拡散と制御ネットアーキテクチャを用いて, 健全なオブジェクト出力処理にインペイント拡散モデルを適用するモデルを提案する。
提案手法は,複数のデータセットにまたがる標準的な視覚的メトリクスの劣化を伴わずに,オブジェクトの展開を平均3.6倍に削減する。
論文 参考訳(メタデータ) (2024-04-15T22:13:35Z) - Foreground-Background Separation through Concept Distillation from
Generative Image Foundation Models [6.408114351192012]
本稿では, 簡単なテキスト記述から, 一般的な前景-背景セグメンテーションモデルの生成を可能にする新しい手法を提案する。
本研究では,4つの異なる物体(人間,犬,車,鳥)を分割する作業と,医療画像解析におけるユースケースシナリオについて述べる。
論文 参考訳(メタデータ) (2022-12-29T13:51:54Z) - ObjectStitch: Generative Object Compositing [43.206123360578665]
本研究では,条件付き拡散モデルを用いたオブジェクト合成のための自己教師型フレームワークを提案する。
我々のフレームワークは、手動ラベリングを必要とせず、生成したオブジェクトの視点、幾何学、色、影を変換することができる。
本手法は, 実世界の様々な画像に対するユーザ研究において, 合成結果画像の写実性と忠実性の両方において, 関連ベースラインよりも優れていた。
論文 参考訳(メタデータ) (2022-12-02T02:15:13Z) - Context-Aware Layout to Image Generation with Enhanced Object Appearance [123.62597976732948]
レイアウト・トゥ・イメージ(l2i)生成モデルの目的は、自然背景(スタフ)に対して複数のオブジェクト(もの)を含む複雑な画像を生成することである。
既存のL2Iモデルは大きな進歩を遂げているが、オブジェクト間とオブジェクト間の関係はしばしば壊れている。
これらの原因は、ジェネレータにコンテキスト認識オブジェクトや機能エンコーディングがないことと、識別装置に位置依存の外観表現がないことにあります。
論文 参考訳(メタデータ) (2021-03-22T14:43:25Z) - Object-Centric Image Generation from Layouts [93.10217725729468]
複数のオブジェクトを持つ複雑なシーンを生成するレイアウト・ツー・イメージ生成法を開発した。
本手法は,シーン内のオブジェクト間の空間的関係の表現を学習し,レイアウトの忠実度の向上につながる。
本稿では,Fr'echet Inception Distanceのオブジェクト中心適応であるSceneFIDを紹介する。
論文 参考訳(メタデータ) (2020-03-16T21:40:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。