論文の概要: ROA-BEV: 2D Region-Oriented Attention for BEV-based 3D Object
- arxiv url: http://arxiv.org/abs/2410.10298v1
- Date: Mon, 14 Oct 2024 08:51:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:24:32.276707
- Title: ROA-BEV: 2D Region-Oriented Attention for BEV-based 3D Object
- Title(参考訳): ROA-BEV:BEVベースの3Dオブジェクトのための2次元領域指向アテンション
- Authors: Jiwei Chen, Laiyan Ding, Chi Zhang, Feifei Li, Rui Huang,
- Abstract要約: BEVに基づく3Dオブジェクト検出ネットワーク(ROA-BEV)のための2次元領域指向アテンションを提案する。
本手法は,マルチスケール構造を用いてROAの情報量を増加させる。
nuScenesの実験では、ROA-BEVはBEVDetとBEVDepthに基づいて性能を改善している。
- 参考スコア(独自算出の注目度): 14.219472370221029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Vision-based BEV (Bird-Eye-View) 3D object detection has recently become popular in autonomous driving. However, objects with a high similarity to the background from a camera perspective cannot be detected well by existing methods. In this paper, we propose 2D Region-oriented Attention for a BEV-based 3D Object Detection Network (ROA-BEV), which can make the backbone focus more on feature learning in areas where objects may exist. Moreover, our method increases the information content of ROA through a multi-scale structure. In addition, every block of ROA utilizes a large kernel to ensure that the receptive field is large enough to catch large objects' information. Experiments on nuScenes show that ROA-BEV improves the performance based on BEVDet and BEVDepth. The code will be released soon.
- Abstract(参考訳): ビジョンベースのBEV (Bird-Eye-View) 3Dオブジェクト検出は、最近自動運転で人気になっている。
しかし、カメラの観点からは、背景と高い類似性を持つ物体は、既存の方法では検出できない。
本稿では,BEVに基づく3次元物体検出ネットワーク(ROA-BEV)のための2次元領域指向アテンションを提案する。
さらに,本手法はマルチスケール構造を用いてROAの情報量を増加させる。
さらに、ROAのすべてのブロックは、大きなカーネルを使用して、大きなオブジェクトの情報を取得するのに十分な受信フィールドを確実にする。
nuScenesの実験では、ROA-BEVはBEVDetとBEVDepthに基づいて性能を改善している。
コードはまもなくリリースされる。
関連論文リスト
- DA-BEV: Unsupervised Domain Adaptation for Bird's Eye View Perception [104.87876441265593]
カメラのみのBird's Eye View (BEV)は3次元空間における環境認識に大きな可能性を示した。
非教師なし領域適応型BEVは、様々な未ラベル対象データから効果的に学習するが、まだ未探索である。
DA-BEVは、画像ビュー機能とBEV機能の相補性を利用して、ドメイン適応型BEV課題に対処する、最初のドメイン適応型カメラのみのBEVフレームワークである。
論文 参考訳(メタデータ) (2024-01-13T04:21:24Z) - BEVNeXt: Reviving Dense BEV Frameworks for 3D Object Detection [47.7933708173225]
近年,クエリベースのトランスフォーマーデコーダが登場し,カメラベースの3Dオブジェクト検出が作り直されている。
本稿では,BEVNeXtと呼ばれる高密度BEVフレームワークを紹介する。
nuScenesベンチマークでは、BEVNeXtはBEVベースのフレームワークとクエリベースのフレームワークの両方を上回っている。
論文 参考訳(メタデータ) (2023-12-04T07:35:02Z) - CoBEV: Elevating Roadside 3D Object Detection with Depth and Height Complementarity [34.025530326420146]
我々は、新しいエンドツーエンドのモノクロ3Dオブジェクト検出フレームワークであるComplementary-BEVを開発した。
道路カメラを用いたDAIR-V2X-IとRope3Dの公開3次元検出ベンチマークについて広範な実験を行った。
カメラモデルのAPスコアが初めてDAIR-V2X-Iで80%に達する。
論文 参考訳(メタデータ) (2023-10-04T13:38:53Z) - OCBEV: Object-Centric BEV Transformer for Multi-View 3D Object Detection [29.530177591608297]
マルチビュー3Dオブジェクト検出は、高い有効性と低コストのため、自動運転において人気を博している。
現在の最先端検出器のほとんどは、クエリベースのバードアイビュー(BEV)パラダイムに従っている。
本稿では,移動対象の時間的・空間的手がかりをより効率的に彫ることができるOCBEVを提案する。
論文 参考訳(メタデータ) (2023-06-02T17:59:48Z) - LiDAR-Based 3D Object Detection via Hybrid 2D Semantic Scene Generation [38.38852904444365]
本稿では,2次元空間における3次元環境のセマンティクスと幾何学の両方をエンコードするシーン表現を提案する。
私たちのシンプルで効果的なデザインは、ほとんどの最先端の3Dオブジェクト検出器に簡単に統合できます。
論文 参考訳(メタデータ) (2023-04-04T04:05:56Z) - OA-BEV: Bringing Object Awareness to Bird's-Eye-View Representation for
Multi-Camera 3D Object Detection [78.38062015443195]
OA-BEVは、BEVベースの3Dオブジェクト検出フレームワークにプラグインできるネットワークである。
提案手法は,BEV ベースラインに対する平均精度と nuScenes 検出スコアの両面で一貫した改善を実現する。
論文 参考訳(メタデータ) (2023-01-13T06:02:31Z) - BEV-MAE: Bird's Eye View Masked Autoencoders for Point Cloud
Pre-training in Autonomous Driving Scenarios [51.285561119993105]
自律運転におけるLiDARに基づく3Dオブジェクト検出のための,効率的なマスク付きオートエンコーダ事前学習フレームワークであるBEV-MAEを提案する。
具体的には、3Dエンコーダ学習特徴表現を導くために,鳥の目視(BEV)誘導マスキング戦略を提案する。
学習可能なポイントトークンを導入し、3Dエンコーダの一貫性のある受容的フィールドサイズを維持する。
論文 参考訳(メタデータ) (2022-12-12T08:15:03Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
本稿では,3次元オブジェクト検出(CMR3D)フレームワークのためのコンテキスト型マルチステージリファインメントを提案する。
我々のフレームワークは3Dシーンを入力として取り、シーンの有用なコンテキスト情報を明示的に統合しようと試みている。
3Dオブジェクトの検出に加えて,3Dオブジェクトカウント問題に対するフレームワークの有効性について検討する。
論文 参考訳(メタデータ) (2022-09-13T05:26:09Z) - M^2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified
Birds-Eye View Representation [145.6041893646006]
M$2$BEVは3Dオブジェクトの検出とマップのセグメンテーションを共同で行う統合フレームワークである。
M$2$BEVは、両方のタスクを統一モデルで推論し、効率を向上する。
論文 参考訳(メタデータ) (2022-04-11T13:43:25Z) - RAANet: Range-Aware Attention Network for LiDAR-based 3D Object
Detection with Auxiliary Density Level Estimation [11.180128679075716]
自律運転のためのLiDARデータから3Dオブジェクトを検出するために,Range-Aware Attention Network (RAANet) が開発された。
RAANetはより強力なBEV機能を抽出し、優れた3Dオブジェクト検出を生成する。
nuScenesデータセットの実験により,提案手法がLiDARを用いた3Dオブジェクト検出の最先端手法より優れていることが示された。
論文 参考訳(メタデータ) (2021-11-18T04:20:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。