DiRW: Path-Aware Digraph Learning for Heterophily
- URL: http://arxiv.org/abs/2410.10320v1
- Date: Mon, 14 Oct 2024 09:26:56 GMT
- Title: DiRW: Path-Aware Digraph Learning for Heterophily
- Authors: Daohan Su, Xunkai Li, Zhenjun Li, Yinping Liao, Rong-Hua Li, Guoren Wang,
- Abstract summary: Graph neural network (GNN) has emerged as a powerful representation learning tool for graph-structured data.
We propose Directed Random Walk (DiRW), which can be viewed as a plug-and-play strategy or an innovative neural architecture.
DiRW incorporates a direction-aware path sampler optimized from perspectives of walk probability, length, and number.
- Score: 23.498557237805414
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recently, graph neural network (GNN) has emerged as a powerful representation learning tool for graph-structured data. However, most approaches are tailored for undirected graphs, neglecting the abundant information embedded in the edges of directed graphs (digraphs). In fact, digraphs are widely applied in the real world (e.g., social networks and recommendations) and are also confirmed to offer a new perspective for addressing topological heterophily challenges (i.e., connected nodes have complex patterns of feature distribution or labels). Despite recent significant advancements in DiGNNs, existing spatial- and spectral-based methods have inherent limitations due to the complex learning mechanisms and reliance on high-quality topology, leading to low efficiency and unstable performance. To address these issues, we propose Directed Random Walk (DiRW), which can be viewed as a plug-and-play strategy or an innovative neural architecture that provides a guidance or new learning paradigm for most spatial-based methods or digraphs. Specifically, DiRW incorporates a direction-aware path sampler optimized from the perspectives of walk probability, length, and number in a weight-free manner by considering node profiles and topological structure. Building upon this, DiRW utilizes a node-wise learnable path aggregator for generalized messages obtained by our proposed adaptive walkers to represent the current node. Extensive experiments on 9 datasets demonstrate that DiRW: (1) enhances most spatial-based methods as a plug-and-play strategy; (2) achieves SOTA performance as a new digraph learning paradigm.
Related papers
- GTAGCN: Generalized Topology Adaptive Graph Convolutional Networks [5.166599023304314]
We derive a hybrid approach based on two established techniques as generalized aggregation networks and topology adaptive graph convolution networks.
Results are at par with literature results and better for handwritten strokes as sequenced data, where graph structures have not been explored.
arXiv Detail & Related papers (2024-03-22T10:02:13Z) - A GAN Approach for Node Embedding in Heterogeneous Graphs Using Subgraph Sampling [33.50085646298074]
We propose a novel framework that combines Graph Neural Network (GNN) and Generative Adrial Network (GAN) to enhance classification for underrepresented node classes.
The framework incorporates an advanced edge generation and selection module, enabling the simultaneous creation of synthetic nodes and edges.
arXiv Detail & Related papers (2023-12-11T16:52:20Z) - Efficient Heterogeneous Graph Learning via Random Projection [58.4138636866903]
Heterogeneous Graph Neural Networks (HGNNs) are powerful tools for deep learning on heterogeneous graphs.
Recent pre-computation-based HGNNs use one-time message passing to transform a heterogeneous graph into regular-shaped tensors.
We propose a hybrid pre-computation-based HGNN, named Random Projection Heterogeneous Graph Neural Network (RpHGNN)
arXiv Detail & Related papers (2023-10-23T01:25:44Z) - Learning How to Propagate Messages in Graph Neural Networks [55.2083896686782]
This paper studies the problem of learning message propagation strategies for graph neural networks (GNNs)
We introduce the optimal propagation steps as latent variables to help find the maximum-likelihood estimation of the GNN parameters.
Our proposed framework can effectively learn personalized and interpretable propagate strategies of messages in GNNs.
arXiv Detail & Related papers (2023-10-01T15:09:59Z) - Ordered Subgraph Aggregation Networks [19.18478955240166]
Subgraph-enhanced graph neural networks (GNNs) have emerged, provably boosting the expressive power of standard (message-passing) GNNs.
Here, we introduce a theoretical framework and extend the known expressivity results of subgraph-enhanced GNNs.
We show that increasing subgraph size always increases the expressive power and develop a better understanding of their limitations.
arXiv Detail & Related papers (2022-06-22T15:19:34Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z) - Adaptive Universal Generalized PageRank Graph Neural Network [36.850433364139924]
Graph neural networks (GNNs) are designed to exploit both sources of evidence but they do not optimally trade-off their utility.
We introduce a new Generalized PageRank (GPR) GNN architecture that adaptively learns the GPR weights.
GPR-GNN offers significant performance improvement compared to existing techniques on both synthetic and benchmark data.
arXiv Detail & Related papers (2020-06-14T19:27:39Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.