論文の概要: Disentangling Hate Across Target Identities
- arxiv url: http://arxiv.org/abs/2410.10332v1
- Date: Mon, 14 Oct 2024 09:43:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:14:39.862075
- Title: Disentangling Hate Across Target Identities
- Title(参考訳): ターゲットのアイデンティティをまたいだヘイトを遠ざける
- Authors: Yiping Jin, Leo Wanner, Aneesh Moideen Koya,
- Abstract要約: 異なる因子がHS予測に与える影響を定量的に分析する。
一般的な産業モデルや学術モデルの実験では、HS検出器は特定のターゲットのアイデンティティの言及に基づいて、より高いヘイトフルネススコアを割り当てている。
また, ヘイトフルネス予測の精度がステレオタイプ強度と強く相関していることを明らかにする社会心理学理論に触発された研究を行った。
- 参考スコア(独自算出の注目度): 4.51019574688293
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hate speech (HS) classifiers do not perform equally well in detecting hateful expressions towards different target identities. They also demonstrate systematic biases in predicted hatefulness scores. Tapping on two recently proposed functionality test datasets for HS detection, we quantitatively analyze the impact of different factors on HS prediction. Experiments on popular industrial and academic models demonstrate that HS detectors assign a higher hatefulness score merely based on the mention of specific target identities. Besides, models often confuse hatefulness and the polarity of emotions. This result is worrisome as the effort to build HS detectors might harm the vulnerable identity groups we wish to protect: posts expressing anger or disapproval of hate expressions might be flagged as hateful themselves. We also carry out a study inspired by social psychology theory, which reveals that the accuracy of hatefulness prediction correlates strongly with the intensity of the stereotype.
- Abstract(参考訳): ヘイトスピーチ(HS)分類器は、異なるターゲットIDに対するヘイトフル表現の検出において等しく機能しない。
彼らはまた、予測された憎悪のスコアに体系的なバイアスを示す。
最近提案された2つのHS検出のための機能テストデータセットをタップして、異なる要因がHS予測に与える影響を定量的に分析する。
一般的な産業モデルや学術モデルの実験では、HS検出器は特定のターゲットのアイデンティティの言及に基づいて、より高いヘイトフルネススコアを割り当てている。
さらに、モデルはしばしば憎悪と感情の極性を混乱させる。
この結果が心配なのは、HS検出器の構築が、私たちが守りたいと願っている脆弱なアイデンティティグループに害を与える可能性があることだ。
また, ヘイトフルネス予測の精度がステレオタイプ強度と強く相関していることを明らかにする社会心理学理論に触発された研究を行った。
関連論文リスト
- A Target-Aware Analysis of Data Augmentation for Hate Speech Detection [3.858155067958448]
ヘイトスピーチは、ソーシャルネットワークの普及によって引き起こされる主要な脅威の1つだ。
本稿では,既存のデータを生成言語モデルで拡張し,ターゲットの不均衡を低減する可能性を検討する。
起源、宗教、障害などのヘイトカテゴリーでは、トレーニングのための強化データを用いたヘイトスピーチ分類は、拡張ベースラインが存在しない場合、10%以上のF1が向上する。
論文 参考訳(メタデータ) (2024-10-10T15:46:27Z) - Human and LLM Biases in Hate Speech Annotations: A Socio-Demographic Analysis of Annotators and Targets [0.6918368994425961]
我々は、アノテータとターゲットの両方の社会デマトグラフィー情報を豊富なデータセットで活用する。
分析の結果,その強度と有病率に基づいて定量的に記述し,特徴付ける広範囲なバイアスの存在が明らかになった。
私たちの研究は、ヘイトスピーチアノテーションにおける人間のバイアスに関する新しい、そして、AI駆動のヘイトスピーチ検出システムの設計に関する新たな洞察を提供する。
論文 参考訳(メタデータ) (2024-10-10T14:48:57Z) - Investigating Human-Identifiable Features Hidden in Adversarial
Perturbations [54.39726653562144]
我々の研究では、最大5つの攻撃アルゴリズムを3つのデータセットにわたって探索する。
対人摂動における人間の識別可能な特徴を同定する。
画素レベルのアノテーションを用いて、そのような特徴を抽出し、ターゲットモデルに妥協する能力を実証する。
論文 参考訳(メタデータ) (2023-09-28T22:31:29Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - A Tale of HodgeRank and Spectral Method: Target Attack Against Rank
Aggregation Is the Fixed Point of Adversarial Game [153.74942025516853]
ランクアグリゲーション手法の本質的な脆弱性は文献ではよく研究されていない。
本稿では,ペアデータの変更による集計結果の指定を希望する目的のある敵に焦点をあてる。
提案した標的攻撃戦略の有効性は,一連の玩具シミュレーションと実世界のデータ実験によって実証された。
論文 参考訳(メタデータ) (2022-09-13T05:59:02Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - "Stop Asian Hate!" : Refining Detection of Anti-Asian Hate Speech During
the COVID-19 Pandemic [2.5227595609842206]
新型コロナウイルス(COVID-19)のパンデミックは、アジアでのキセノフォビアと偏見の急増を加速させた。
我々は2つの実験的なアプローチを用いてTwitterのツイートのコーパスを作成して注釈付けし、反アジア人虐待とヘイトスピーチを探索する。
論文 参考訳(メタデータ) (2021-12-04T06:55:19Z) - Towards A Conceptually Simple Defensive Approach for Few-shot
classifiers Against Adversarial Support Samples [107.38834819682315]
本研究は,数発の分類器を敵攻撃から守るための概念的簡便なアプローチについて検討する。
本稿では,自己相似性とフィルタリングの概念を用いた簡易な攻撃非依存検出法を提案する。
ミニイメージネット(MI)とCUBデータセットの攻撃検出性能は良好である。
論文 参考訳(メタデータ) (2021-10-24T05:46:03Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
本稿では,データセットバイアスによる負の効果を軽減するために,新しい感情認識ネットワーク(IERN)を提案する。
IERNの有効性を検証する一連の設計されたテストと、3つの感情ベンチマークの実験は、IERNが他の最先端のアプローチよりも優れていることを示した。
論文 参考訳(メタデータ) (2021-07-26T10:40:59Z) - Statistical Analysis of Perspective Scores on Hate Speech Detection [7.447951461558536]
最先端のヘイトスピーチ分類器は、トレーニングデータと同じ特徴分布を持つデータ上でテストする場合のみ効率的である。
このような低レベルの特徴に依存する多様なデータ分布は、データの自然なバイアスによる欠如の主な原因である。
異なるヘイトスピーチデータセットは、パースペクティブスコアを抽出するという点では、非常によく似ている。
論文 参考訳(メタデータ) (2021-06-22T17:17:35Z) - AngryBERT: Joint Learning Target and Emotion for Hate Speech Detection [5.649040805759824]
本論文では,感情分類によるヘイトスピーチ検出と,二次的関連タスクとしてのターゲット同定を共同学習するマルチタスク学習型モデルであるAngryBERTを提案する。
実験の結果,AngryBERTは最先端のシングルタスク学習やマルチタスク学習のベースラインよりも優れていた。
論文 参考訳(メタデータ) (2021-03-14T16:17:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。