Pubic Symphysis-Fetal Head Segmentation Network Using BiFormer Attention Mechanism and Multipath Dilated Convolution
- URL: http://arxiv.org/abs/2410.10352v2
- Date: Tue, 15 Oct 2024 02:56:16 GMT
- Title: Pubic Symphysis-Fetal Head Segmentation Network Using BiFormer Attention Mechanism and Multipath Dilated Convolution
- Authors: Pengzhou Cai, Lu Jiang, Yanxin Li, Xiaojuan Liu, Libin Lan,
- Abstract summary: Pubic symphysis-fetal head segmentation in transperineal ultrasound images plays a critical role for the assessment of fetal head descent and progression.
We introduce a dynamic, query-aware sparse attention mechanism for ultrasound image segmentation.
We propose a novel method, named BRAU-Net, to solve the pubic symphysis-fetal head segmentation task.
- Score: 6.673262517388075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pubic symphysis-fetal head segmentation in transperineal ultrasound images plays a critical role for the assessment of fetal head descent and progression. Existing transformer segmentation methods based on sparse attention mechanism use handcrafted static patterns, which leads to great differences in terms of segmentation performance on specific datasets. To address this issue, we introduce a dynamic, query-aware sparse attention mechanism for ultrasound image segmentation. Specifically, we propose a novel method, named BRAU-Net to solve the pubic symphysis-fetal head segmentation task in this paper. The method adopts a U-Net-like encoder-decoder architecture with bi-level routing attention and skip connections, which effectively learns local-global semantic information. In addition, we propose an inverted bottleneck patch expanding (IBPE) module to reduce information loss while performing up-sampling operations. The proposed BRAU-Net is evaluated on FH-PS-AoP and HC18 datasets. The results demonstrate that our method could achieve excellent segmentation results. The code is available on GitHub.
Related papers
- UnSeGArmaNet: Unsupervised Image Segmentation using Graph Neural Networks with Convolutional ARMA Filters [10.940349832919699]
We propose an unsupervised segmentation framework with a pre-trained ViT.
By harnessing the graph structure inherent within the image, the proposed method achieves a notable performance in segmentation.
The proposed method provides state-of-the-art performance (even comparable to supervised methods) on benchmark image segmentation datasets.
arXiv Detail & Related papers (2024-10-08T15:10:09Z) - DiffCut: Catalyzing Zero-Shot Semantic Segmentation with Diffusion Features and Recursive Normalized Cut [62.63481844384229]
Foundation models have emerged as powerful tools across various domains including language, vision, and multimodal tasks.
In this paper, we use a diffusion UNet encoder as a foundation vision encoder and introduce DiffCut, an unsupervised zero-shot segmentation method.
Our work highlights the remarkably accurate semantic knowledge embedded within diffusion UNet encoders that could then serve as foundation vision encoders for downstream tasks.
arXiv Detail & Related papers (2024-06-05T01:32:31Z) - Pubic Symphysis-Fetal Head Segmentation Using Pure Transformer with Bi-level Routing Attention [6.709399356217316]
We propose a method, named BRAU-Net, to solve the pubic symphysis-fetal head segmentation task.
The method adopts a U-Net-like pure Transformer architecture with bi-level routing attention and skip connections, which effectively learns local-global semantic information.
arXiv Detail & Related papers (2023-09-30T07:45:50Z) - Interactive Segmentation as Gaussian Process Classification [58.44673380545409]
Click-based interactive segmentation (IS) aims to extract the target objects under user interaction.
Most of the current deep learning (DL)-based methods mainly follow the general pipelines of semantic segmentation.
We propose to formulate the IS task as a Gaussian process (GP)-based pixel-wise binary classification model on each image.
arXiv Detail & Related papers (2023-02-28T14:01:01Z) - Reducing Information Bottleneck for Weakly Supervised Semantic
Segmentation [17.979336178991083]
Weakly supervised semantic segmentation produces pixel-level localization from class labels.
A classifier trained on such labels is likely to focus on a small discriminative region of the target object.
We propose a method to reduce the information bottleneck by removing the last activation function.
In addition, we introduce a new pooling method that further encourages the transmission of information from non-discriminative regions to the classification.
arXiv Detail & Related papers (2021-10-13T06:49:45Z) - Boosting Few-shot Semantic Segmentation with Transformers [81.43459055197435]
TRansformer-based Few-shot Semantic segmentation method (TRFS)
Our model consists of two modules: Global Enhancement Module (GEM) and Local Enhancement Module (LEM)
arXiv Detail & Related papers (2021-08-04T20:09:21Z) - Deep ensembles based on Stochastic Activation Selection for Polyp
Segmentation [82.61182037130406]
This work deals with medical image segmentation and in particular with accurate polyp detection and segmentation during colonoscopy examinations.
Basic architecture in image segmentation consists of an encoder and a decoder.
We compare some variant of the DeepLab architecture obtained by varying the decoder backbone.
arXiv Detail & Related papers (2021-04-02T02:07:37Z) - Self-Guided and Cross-Guided Learning for Few-Shot Segmentation [12.899804391102435]
We propose a self-guided learning approach for few-shot segmentation.
By making an initial prediction for the annotated support image, the covered and uncovered foreground regions are encoded to the primary and auxiliary support vectors.
By aggregating both primary and auxiliary support vectors, better segmentation performances are obtained on query images.
arXiv Detail & Related papers (2021-03-30T07:36:41Z) - An Uncertainty-Driven GCN Refinement Strategy for Organ Segmentation [53.425900196763756]
We propose a segmentation refinement method based on uncertainty analysis and graph convolutional networks.
We employ the uncertainty levels of the convolutional network in a particular input volume to formulate a semi-supervised graph learning problem.
We show that our method outperforms the state-of-the-art CRF refinement method by improving the dice score by 1% for the pancreas and 2% for spleen.
arXiv Detail & Related papers (2020-12-06T18:55:07Z) - Boundary-assisted Region Proposal Networks for Nucleus Segmentation [89.69059532088129]
Machine learning models cannot perform well because of large amount of crowded nuclei.
We devise a Boundary-assisted Region Proposal Network (BRP-Net) that achieves robust instance-level nucleus segmentation.
arXiv Detail & Related papers (2020-06-04T08:26:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.